87 lines
2.6 KiB
Python
87 lines
2.6 KiB
Python
|
import numpy as np
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
from torch.autograd import Function
|
||
|
from torch.autograd.function import once_differentiable
|
||
|
from torch.cuda.amp import custom_bwd, custom_fwd
|
||
|
|
||
|
try:
|
||
|
import _shencoder as _backend
|
||
|
except ImportError:
|
||
|
from .backend import _backend
|
||
|
|
||
|
class _sh_encoder(Function):
|
||
|
@staticmethod
|
||
|
@custom_fwd(cast_inputs=torch.float32) # force float32 for better precision
|
||
|
def forward(ctx, inputs, degree, calc_grad_inputs=False):
|
||
|
# inputs: [B, input_dim], float in [-1, 1]
|
||
|
# RETURN: [B, F], float
|
||
|
|
||
|
inputs = inputs.contiguous()
|
||
|
B, input_dim = inputs.shape # batch size, coord dim
|
||
|
output_dim = degree ** 2
|
||
|
|
||
|
outputs = torch.empty(B, output_dim, dtype=inputs.dtype, device=inputs.device)
|
||
|
|
||
|
if calc_grad_inputs:
|
||
|
dy_dx = torch.empty(B, input_dim * output_dim, dtype=inputs.dtype, device=inputs.device)
|
||
|
else:
|
||
|
dy_dx = None
|
||
|
|
||
|
_backend.sh_encode_forward(inputs, outputs, B, input_dim, degree, dy_dx)
|
||
|
|
||
|
ctx.save_for_backward(inputs, dy_dx)
|
||
|
ctx.dims = [B, input_dim, degree]
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
@staticmethod
|
||
|
#@once_differentiable
|
||
|
@custom_bwd
|
||
|
def backward(ctx, grad):
|
||
|
# grad: [B, C * C]
|
||
|
|
||
|
inputs, dy_dx = ctx.saved_tensors
|
||
|
|
||
|
if dy_dx is not None:
|
||
|
grad = grad.contiguous()
|
||
|
B, input_dim, degree = ctx.dims
|
||
|
grad_inputs = torch.zeros_like(inputs)
|
||
|
_backend.sh_encode_backward(grad, inputs, B, input_dim, degree, dy_dx, grad_inputs)
|
||
|
return grad_inputs, None, None
|
||
|
else:
|
||
|
return None, None, None
|
||
|
|
||
|
|
||
|
|
||
|
sh_encode = _sh_encoder.apply
|
||
|
|
||
|
|
||
|
class SHEncoder(nn.Module):
|
||
|
def __init__(self, input_dim=3, degree=4):
|
||
|
super().__init__()
|
||
|
|
||
|
self.input_dim = input_dim # coord dims, must be 3
|
||
|
self.degree = degree # 0 ~ 4
|
||
|
self.output_dim = degree ** 2
|
||
|
|
||
|
assert self.input_dim == 3, "SH encoder only support input dim == 3"
|
||
|
assert self.degree > 0 and self.degree <= 8, "SH encoder only supports degree in [1, 8]"
|
||
|
|
||
|
def __repr__(self):
|
||
|
return f"SHEncoder: input_dim={self.input_dim} degree={self.degree}"
|
||
|
|
||
|
def forward(self, inputs, size=1):
|
||
|
# inputs: [..., input_dim], normalized real world positions in [-size, size]
|
||
|
# return: [..., degree^2]
|
||
|
|
||
|
inputs = inputs / size # [-1, 1]
|
||
|
|
||
|
prefix_shape = list(inputs.shape[:-1])
|
||
|
inputs = inputs.reshape(-1, self.input_dim)
|
||
|
|
||
|
outputs = sh_encode(inputs, self.degree, inputs.requires_grad)
|
||
|
outputs = outputs.reshape(prefix_shape + [self.output_dim])
|
||
|
|
||
|
return outputs
|