110 lines
3.6 KiB
Python
110 lines
3.6 KiB
Python
|
#!/usr/bin/python
|
||
|
# -*- encoding: utf-8 -*-
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
import torch.utils.model_zoo as modelzoo
|
||
|
|
||
|
# from modules.bn import InPlaceABNSync as BatchNorm2d
|
||
|
|
||
|
resnet18_url = 'https://download.pytorch.org/models/resnet18-5c106cde.pth'
|
||
|
|
||
|
|
||
|
def conv3x3(in_planes, out_planes, stride=1):
|
||
|
"""3x3 convolution with padding"""
|
||
|
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
|
||
|
padding=1, bias=False)
|
||
|
|
||
|
|
||
|
class BasicBlock(nn.Module):
|
||
|
def __init__(self, in_chan, out_chan, stride=1):
|
||
|
super(BasicBlock, self).__init__()
|
||
|
self.conv1 = conv3x3(in_chan, out_chan, stride)
|
||
|
self.bn1 = nn.BatchNorm2d(out_chan)
|
||
|
self.conv2 = conv3x3(out_chan, out_chan)
|
||
|
self.bn2 = nn.BatchNorm2d(out_chan)
|
||
|
self.relu = nn.ReLU(inplace=True)
|
||
|
self.downsample = None
|
||
|
if in_chan != out_chan or stride != 1:
|
||
|
self.downsample = nn.Sequential(
|
||
|
nn.Conv2d(in_chan, out_chan,
|
||
|
kernel_size=1, stride=stride, bias=False),
|
||
|
nn.BatchNorm2d(out_chan),
|
||
|
)
|
||
|
|
||
|
def forward(self, x):
|
||
|
residual = self.conv1(x)
|
||
|
residual = F.relu(self.bn1(residual))
|
||
|
residual = self.conv2(residual)
|
||
|
residual = self.bn2(residual)
|
||
|
|
||
|
shortcut = x
|
||
|
if self.downsample is not None:
|
||
|
shortcut = self.downsample(x)
|
||
|
|
||
|
out = shortcut + residual
|
||
|
out = self.relu(out)
|
||
|
return out
|
||
|
|
||
|
|
||
|
def create_layer_basic(in_chan, out_chan, bnum, stride=1):
|
||
|
layers = [BasicBlock(in_chan, out_chan, stride=stride)]
|
||
|
for i in range(bnum-1):
|
||
|
layers.append(BasicBlock(out_chan, out_chan, stride=1))
|
||
|
return nn.Sequential(*layers)
|
||
|
|
||
|
|
||
|
class Resnet18(nn.Module):
|
||
|
def __init__(self, model_path):
|
||
|
super(Resnet18, self).__init__()
|
||
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
|
||
|
bias=False)
|
||
|
self.bn1 = nn.BatchNorm2d(64)
|
||
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||
|
self.layer1 = create_layer_basic(64, 64, bnum=2, stride=1)
|
||
|
self.layer2 = create_layer_basic(64, 128, bnum=2, stride=2)
|
||
|
self.layer3 = create_layer_basic(128, 256, bnum=2, stride=2)
|
||
|
self.layer4 = create_layer_basic(256, 512, bnum=2, stride=2)
|
||
|
self.init_weight(model_path)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.conv1(x)
|
||
|
x = F.relu(self.bn1(x))
|
||
|
x = self.maxpool(x)
|
||
|
|
||
|
x = self.layer1(x)
|
||
|
feat8 = self.layer2(x) # 1/8
|
||
|
feat16 = self.layer3(feat8) # 1/16
|
||
|
feat32 = self.layer4(feat16) # 1/32
|
||
|
return feat8, feat16, feat32
|
||
|
|
||
|
def init_weight(self, model_path):
|
||
|
state_dict = torch.load(model_path) #modelzoo.load_url(resnet18_url)
|
||
|
self_state_dict = self.state_dict()
|
||
|
for k, v in state_dict.items():
|
||
|
if 'fc' in k: continue
|
||
|
self_state_dict.update({k: v})
|
||
|
self.load_state_dict(self_state_dict)
|
||
|
|
||
|
def get_params(self):
|
||
|
wd_params, nowd_params = [], []
|
||
|
for name, module in self.named_modules():
|
||
|
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
||
|
wd_params.append(module.weight)
|
||
|
if not module.bias is None:
|
||
|
nowd_params.append(module.bias)
|
||
|
elif isinstance(module, nn.BatchNorm2d):
|
||
|
nowd_params += list(module.parameters())
|
||
|
return wd_params, nowd_params
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
net = Resnet18()
|
||
|
x = torch.randn(16, 3, 224, 224)
|
||
|
out = net(x)
|
||
|
print(out[0].size())
|
||
|
print(out[1].size())
|
||
|
print(out[2].size())
|
||
|
net.get_params()
|