2024-01-09 10:01:50 +08:00
|
|
|
|
import time
|
|
|
|
|
import numpy as np
|
|
|
|
|
import torch
|
|
|
|
|
import torch.nn.functional as F
|
2024-03-23 18:15:35 +08:00
|
|
|
|
from transformers import AutoModelForCTC, AutoProcessor, Wav2Vec2Processor, HubertModel
|
2024-01-09 10:01:50 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import queue
|
|
|
|
|
from queue import Queue
|
|
|
|
|
#from collections import deque
|
|
|
|
|
from threading import Thread, Event
|
|
|
|
|
|
2024-06-30 09:41:31 +08:00
|
|
|
|
from baseasr import BaseASR
|
2024-01-09 10:01:50 +08:00
|
|
|
|
|
2024-08-03 12:58:49 +08:00
|
|
|
|
class NerfASR(BaseASR):
|
|
|
|
|
def __init__(self, opt, parent):
|
|
|
|
|
super().__init__(opt,parent)
|
2024-01-09 10:01:50 +08:00
|
|
|
|
|
|
|
|
|
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
|
if 'esperanto' in self.opt.asr_model:
|
|
|
|
|
self.audio_dim = 44
|
|
|
|
|
elif 'deepspeech' in self.opt.asr_model:
|
|
|
|
|
self.audio_dim = 29
|
2024-03-23 18:15:35 +08:00
|
|
|
|
elif 'hubert' in self.opt.asr_model:
|
|
|
|
|
self.audio_dim = 1024
|
2024-01-09 10:01:50 +08:00
|
|
|
|
else:
|
|
|
|
|
self.audio_dim = 32
|
|
|
|
|
|
|
|
|
|
# prepare context cache
|
|
|
|
|
# each segment is (stride_left + ctx + stride_right) * 20ms, latency should be (ctx + stride_right) * 20ms
|
|
|
|
|
self.context_size = opt.m
|
|
|
|
|
self.stride_left_size = opt.l
|
|
|
|
|
self.stride_right_size = opt.r
|
|
|
|
|
|
|
|
|
|
# pad left frames
|
|
|
|
|
if self.stride_left_size > 0:
|
|
|
|
|
self.frames.extend([np.zeros(self.chunk, dtype=np.float32)] * self.stride_left_size)
|
|
|
|
|
|
|
|
|
|
# create wav2vec model
|
|
|
|
|
print(f'[INFO] loading ASR model {self.opt.asr_model}...')
|
2024-03-23 18:15:35 +08:00
|
|
|
|
if 'hubert' in self.opt.asr_model:
|
|
|
|
|
self.processor = Wav2Vec2Processor.from_pretrained(opt.asr_model)
|
|
|
|
|
self.model = HubertModel.from_pretrained(opt.asr_model).to(self.device)
|
|
|
|
|
else:
|
|
|
|
|
self.processor = AutoProcessor.from_pretrained(opt.asr_model)
|
|
|
|
|
self.model = AutoModelForCTC.from_pretrained(opt.asr_model).to(self.device)
|
2024-01-09 10:01:50 +08:00
|
|
|
|
|
|
|
|
|
# the extracted features
|
|
|
|
|
# use a loop queue to efficiently record endless features: [f--t---][-------][-------]
|
|
|
|
|
self.feat_buffer_size = 4
|
|
|
|
|
self.feat_buffer_idx = 0
|
|
|
|
|
self.feat_queue = torch.zeros(self.feat_buffer_size * self.context_size, self.audio_dim, dtype=torch.float32, device=self.device)
|
|
|
|
|
|
|
|
|
|
# TODO: hard coded 16 and 8 window size...
|
|
|
|
|
self.front = self.feat_buffer_size * self.context_size - 8 # fake padding
|
|
|
|
|
self.tail = 8
|
|
|
|
|
# attention window...
|
|
|
|
|
self.att_feats = [torch.zeros(self.audio_dim, 16, dtype=torch.float32, device=self.device)] * 4 # 4 zero padding...
|
|
|
|
|
|
|
|
|
|
# warm up steps needed: mid + right + window_size + attention_size
|
2024-04-26 23:30:07 +08:00
|
|
|
|
self.warm_up_steps = self.context_size + self.stride_left_size + self.stride_right_size #+ self.stride_left_size #+ 8 + 2 * 3
|
2024-01-09 10:01:50 +08:00
|
|
|
|
|
2024-06-30 09:41:31 +08:00
|
|
|
|
def get_audio_frame(self):
|
|
|
|
|
try:
|
|
|
|
|
frame = self.queue.get(block=False)
|
|
|
|
|
type = 0
|
|
|
|
|
#print(f'[INFO] get frame {frame.shape}')
|
|
|
|
|
except queue.Empty:
|
2024-08-03 12:58:49 +08:00
|
|
|
|
if self.parent and self.parent.curr_state>1: #播放自定义音频
|
|
|
|
|
frame = self.parent.get_audio_stream(self.parent.curr_state)
|
|
|
|
|
type = self.parent.curr_state
|
|
|
|
|
else:
|
|
|
|
|
frame = np.zeros(self.chunk, dtype=np.float32)
|
|
|
|
|
type = 1
|
2024-06-30 09:41:31 +08:00
|
|
|
|
|
|
|
|
|
return frame,type
|
2024-01-09 10:01:50 +08:00
|
|
|
|
|
2024-04-05 08:55:21 +08:00
|
|
|
|
def get_next_feat(self): #get audio embedding to nerf
|
|
|
|
|
# return a [1/8, 16] window, for the next input to nerf side.
|
|
|
|
|
if self.opt.att>0:
|
|
|
|
|
while len(self.att_feats) < 8:
|
|
|
|
|
# [------f+++t-----]
|
|
|
|
|
if self.front < self.tail:
|
|
|
|
|
feat = self.feat_queue[self.front:self.tail]
|
|
|
|
|
# [++t-----------f+]
|
|
|
|
|
else:
|
|
|
|
|
feat = torch.cat([self.feat_queue[self.front:], self.feat_queue[:self.tail]], dim=0)
|
2024-01-09 10:01:50 +08:00
|
|
|
|
|
2024-04-05 08:55:21 +08:00
|
|
|
|
self.front = (self.front + 2) % self.feat_queue.shape[0]
|
|
|
|
|
self.tail = (self.tail + 2) % self.feat_queue.shape[0]
|
2024-01-09 10:01:50 +08:00
|
|
|
|
|
2024-04-05 08:55:21 +08:00
|
|
|
|
# print(self.front, self.tail, feat.shape)
|
2024-01-09 10:01:50 +08:00
|
|
|
|
|
2024-04-05 08:55:21 +08:00
|
|
|
|
self.att_feats.append(feat.permute(1, 0))
|
|
|
|
|
|
|
|
|
|
att_feat = torch.stack(self.att_feats, dim=0) # [8, 44, 16]
|
2024-01-09 10:01:50 +08:00
|
|
|
|
|
2024-04-05 08:55:21 +08:00
|
|
|
|
# discard old
|
|
|
|
|
self.att_feats = self.att_feats[1:]
|
|
|
|
|
else:
|
2024-01-09 10:01:50 +08:00
|
|
|
|
# [------f+++t-----]
|
|
|
|
|
if self.front < self.tail:
|
|
|
|
|
feat = self.feat_queue[self.front:self.tail]
|
|
|
|
|
# [++t-----------f+]
|
|
|
|
|
else:
|
|
|
|
|
feat = torch.cat([self.feat_queue[self.front:], self.feat_queue[:self.tail]], dim=0)
|
|
|
|
|
|
|
|
|
|
self.front = (self.front + 2) % self.feat_queue.shape[0]
|
|
|
|
|
self.tail = (self.tail + 2) % self.feat_queue.shape[0]
|
|
|
|
|
|
2024-04-05 08:55:21 +08:00
|
|
|
|
att_feat = feat.permute(1, 0).unsqueeze(0)
|
2024-01-09 10:01:50 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return att_feat
|
|
|
|
|
|
|
|
|
|
def run_step(self):
|
|
|
|
|
|
|
|
|
|
# get a frame of audio
|
2024-06-30 09:41:31 +08:00
|
|
|
|
frame,type = self.get_audio_frame()
|
|
|
|
|
self.frames.append(frame)
|
|
|
|
|
# put to output
|
|
|
|
|
self.output_queue.put((frame,type))
|
|
|
|
|
# context not enough, do not run network.
|
|
|
|
|
if len(self.frames) < self.stride_left_size + self.context_size + self.stride_right_size:
|
|
|
|
|
return
|
2024-01-09 10:01:50 +08:00
|
|
|
|
|
|
|
|
|
inputs = np.concatenate(self.frames) # [N * chunk]
|
|
|
|
|
|
|
|
|
|
# discard the old part to save memory
|
2024-06-30 09:41:31 +08:00
|
|
|
|
self.frames = self.frames[-(self.stride_left_size + self.stride_right_size):]
|
2024-01-09 10:01:50 +08:00
|
|
|
|
|
2024-04-27 18:08:57 +08:00
|
|
|
|
#print(f'[INFO] frame_to_text... ')
|
2024-01-13 17:12:25 +08:00
|
|
|
|
#t = time.time()
|
2024-04-05 08:55:21 +08:00
|
|
|
|
logits, labels, text = self.__frame_to_text(inputs)
|
2024-01-13 17:12:25 +08:00
|
|
|
|
#print(f'-------wav2vec time:{time.time()-t:.4f}s')
|
2024-01-09 10:01:50 +08:00
|
|
|
|
feats = logits # better lips-sync than labels
|
|
|
|
|
|
|
|
|
|
# record the feats efficiently.. (no concat, constant memory)
|
|
|
|
|
start = self.feat_buffer_idx * self.context_size
|
|
|
|
|
end = start + feats.shape[0]
|
|
|
|
|
self.feat_queue[start:end] = feats
|
|
|
|
|
self.feat_buffer_idx = (self.feat_buffer_idx + 1) % self.feat_buffer_size
|
|
|
|
|
|
|
|
|
|
# very naive, just concat the text output.
|
2024-01-11 11:08:04 +08:00
|
|
|
|
#if text != '':
|
|
|
|
|
# self.text = self.text + ' ' + text
|
2024-01-09 10:01:50 +08:00
|
|
|
|
|
|
|
|
|
# will only run once at ternimation
|
2024-06-01 06:58:02 +08:00
|
|
|
|
# if self.terminated:
|
|
|
|
|
# self.text += '\n[END]'
|
|
|
|
|
# print(self.text)
|
|
|
|
|
# if self.opt.asr_save_feats:
|
|
|
|
|
# print(f'[INFO] save all feats for training purpose... ')
|
|
|
|
|
# feats = torch.cat(self.all_feats, dim=0) # [N, C]
|
|
|
|
|
# # print('[INFO] before unfold', feats.shape)
|
|
|
|
|
# window_size = 16
|
|
|
|
|
# padding = window_size // 2
|
|
|
|
|
# feats = feats.view(-1, self.audio_dim).permute(1, 0).contiguous() # [C, M]
|
|
|
|
|
# feats = feats.view(1, self.audio_dim, -1, 1) # [1, C, M, 1]
|
|
|
|
|
# unfold_feats = F.unfold(feats, kernel_size=(window_size, 1), padding=(padding, 0), stride=(2, 1)) # [1, C * window_size, M / 2 + 1]
|
|
|
|
|
# unfold_feats = unfold_feats.view(self.audio_dim, window_size, -1).permute(2, 1, 0).contiguous() # [C, window_size, M / 2 + 1] --> [M / 2 + 1, window_size, C]
|
|
|
|
|
# # print('[INFO] after unfold', unfold_feats.shape)
|
|
|
|
|
# # save to a npy file
|
|
|
|
|
# if 'esperanto' in self.opt.asr_model:
|
|
|
|
|
# output_path = self.opt.asr_wav.replace('.wav', '_eo.npy')
|
|
|
|
|
# else:
|
|
|
|
|
# output_path = self.opt.asr_wav.replace('.wav', '.npy')
|
|
|
|
|
# np.save(output_path, unfold_feats.cpu().numpy())
|
|
|
|
|
# print(f"[INFO] saved logits to {output_path}")
|
2024-01-09 10:01:50 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2024-04-05 08:55:21 +08:00
|
|
|
|
def __frame_to_text(self, frame):
|
2024-01-09 10:01:50 +08:00
|
|
|
|
# frame: [N * 320], N = (context_size + 2 * stride_size)
|
|
|
|
|
|
|
|
|
|
inputs = self.processor(frame, sampling_rate=self.sample_rate, return_tensors="pt", padding=True)
|
|
|
|
|
|
|
|
|
|
with torch.no_grad():
|
|
|
|
|
result = self.model(inputs.input_values.to(self.device))
|
2024-03-23 18:15:35 +08:00
|
|
|
|
if 'hubert' in self.opt.asr_model:
|
|
|
|
|
logits = result.last_hidden_state # [B=1, T=pts//320, hid=1024]
|
|
|
|
|
else:
|
|
|
|
|
logits = result.logits # [1, N - 1, 32]
|
|
|
|
|
#print('logits.shape:',logits.shape)
|
2024-01-09 10:01:50 +08:00
|
|
|
|
|
|
|
|
|
# cut off stride
|
|
|
|
|
left = max(0, self.stride_left_size)
|
|
|
|
|
right = min(logits.shape[1], logits.shape[1] - self.stride_right_size + 1) # +1 to make sure output is the same length as input.
|
|
|
|
|
|
|
|
|
|
# do not cut right if terminated.
|
2024-06-30 09:41:31 +08:00
|
|
|
|
# if self.terminated:
|
|
|
|
|
# right = logits.shape[1]
|
2024-01-09 10:01:50 +08:00
|
|
|
|
|
|
|
|
|
logits = logits[:, left:right]
|
|
|
|
|
|
|
|
|
|
# print(frame.shape, inputs.input_values.shape, logits.shape)
|
|
|
|
|
|
2024-01-13 17:12:25 +08:00
|
|
|
|
#predicted_ids = torch.argmax(logits, dim=-1)
|
|
|
|
|
#transcription = self.processor.batch_decode(predicted_ids)[0].lower()
|
2024-01-09 10:01:50 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# for esperanto
|
|
|
|
|
# labels = np.array(['ŭ', '»', 'c', 'ĵ', 'ñ', '”', '„', '“', 'ǔ', 'o', 'ĝ', 'm', 'k', 'd', 'a', 'ŝ', 'z', 'i', '«', '—', '‘', 'ĥ', 'f', 'y', 'h', 'j', '|', 'r', 'u', 'ĉ', 's', '–', 'fi', 'l', 'p', '’', 'g', 'v', 't', 'b', 'n', 'e', '[UNK]', '[PAD]'])
|
|
|
|
|
|
|
|
|
|
# labels = np.array([' ', ' ', ' ', '-', '|', 'E', 'T', 'A', 'O', 'N', 'I', 'H', 'S', 'R', 'D', 'L', 'U', 'M', 'W', 'C', 'F', 'G', 'Y', 'P', 'B', 'V', 'K', "'", 'X', 'J', 'Q', 'Z'])
|
|
|
|
|
# print(''.join(labels[predicted_ids[0].detach().cpu().long().numpy()]))
|
|
|
|
|
# print(predicted_ids[0])
|
|
|
|
|
# print(transcription)
|
|
|
|
|
|
2024-01-13 17:12:25 +08:00
|
|
|
|
return logits[0], None,None #predicted_ids[0], transcription # [N,]
|
2024-01-09 10:01:50 +08:00
|
|
|
|
|
2024-06-30 09:41:31 +08:00
|
|
|
|
|
|
|
|
|
def warm_up(self):
|
|
|
|
|
print(f'[INFO] warm up ASR live model, expected latency = {self.warm_up_steps / self.fps:.6f}s')
|
|
|
|
|
t = time.time()
|
|
|
|
|
#for _ in range(self.stride_left_size):
|
|
|
|
|
# self.frames.append(np.zeros(self.chunk, dtype=np.float32))
|
|
|
|
|
for _ in range(self.warm_up_steps):
|
|
|
|
|
self.run_step()
|
|
|
|
|
#if torch.cuda.is_available():
|
|
|
|
|
# torch.cuda.synchronize()
|
|
|
|
|
t = time.time() - t
|
|
|
|
|
print(f'[INFO] warm-up done, actual latency = {t:.6f}s')
|
|
|
|
|
|
|
|
|
|
#self.clear_queue()
|
|
|
|
|
|
|
|
|
|
#####not used function#####################################
|
|
|
|
|
'''
|
2024-04-05 08:55:21 +08:00
|
|
|
|
def __init_queue(self):
|
|
|
|
|
self.frames = []
|
|
|
|
|
self.queue.queue.clear()
|
|
|
|
|
self.output_queue.queue.clear()
|
|
|
|
|
self.front = self.feat_buffer_size * self.context_size - 8 # fake padding
|
|
|
|
|
self.tail = 8
|
|
|
|
|
# attention window...
|
|
|
|
|
self.att_feats = [torch.zeros(self.audio_dim, 16, dtype=torch.float32, device=self.device)] * 4
|
2024-01-09 10:01:50 +08:00
|
|
|
|
|
|
|
|
|
def run(self):
|
|
|
|
|
|
|
|
|
|
self.listen()
|
|
|
|
|
|
|
|
|
|
while not self.terminated:
|
|
|
|
|
self.run_step()
|
|
|
|
|
|
|
|
|
|
def clear_queue(self):
|
|
|
|
|
# clear the queue, to reduce potential latency...
|
|
|
|
|
print(f'[INFO] clear queue')
|
|
|
|
|
if self.mode == 'live':
|
|
|
|
|
self.queue.queue.clear()
|
|
|
|
|
if self.play:
|
|
|
|
|
self.output_queue.queue.clear()
|
|
|
|
|
|
2024-04-05 08:55:21 +08:00
|
|
|
|
def listen(self):
|
|
|
|
|
# start
|
|
|
|
|
if self.mode == 'live' and not self.listening:
|
|
|
|
|
print(f'[INFO] starting read frame thread...')
|
|
|
|
|
self.process_read_frame.start()
|
|
|
|
|
self.listening = True
|
|
|
|
|
|
|
|
|
|
if self.play and not self.playing:
|
|
|
|
|
print(f'[INFO] starting play frame thread...')
|
|
|
|
|
self.process_play_frame.start()
|
|
|
|
|
self.playing = True
|
|
|
|
|
|
|
|
|
|
def stop(self):
|
|
|
|
|
|
|
|
|
|
self.exit_event.set()
|
|
|
|
|
|
|
|
|
|
if self.play:
|
|
|
|
|
self.output_stream.stop_stream()
|
|
|
|
|
self.output_stream.close()
|
|
|
|
|
if self.playing:
|
|
|
|
|
self.process_play_frame.join()
|
|
|
|
|
self.playing = False
|
|
|
|
|
|
|
|
|
|
if self.mode == 'live':
|
|
|
|
|
#self.input_stream.stop_stream() todo
|
|
|
|
|
self.input_stream.close()
|
|
|
|
|
if self.listening:
|
|
|
|
|
self.process_read_frame.join()
|
|
|
|
|
self.listening = False
|
2024-01-09 10:01:50 +08:00
|
|
|
|
|
|
|
|
|
|
2024-04-05 08:55:21 +08:00
|
|
|
|
def __enter__(self):
|
|
|
|
|
return self
|
|
|
|
|
|
|
|
|
|
def __exit__(self, exc_type, exc_value, traceback):
|
|
|
|
|
|
|
|
|
|
self.stop()
|
|
|
|
|
|
|
|
|
|
if self.mode == 'live':
|
|
|
|
|
# live mode: also print the result text.
|
|
|
|
|
self.text += '\n[END]'
|
|
|
|
|
print(self.text)
|
2024-06-01 06:58:02 +08:00
|
|
|
|
|
|
|
|
|
def _read_frame(stream, exit_event, queue, chunk):
|
|
|
|
|
while True:
|
|
|
|
|
if exit_event.is_set():
|
|
|
|
|
print(f'[INFO] read frame thread ends')
|
|
|
|
|
break
|
|
|
|
|
frame = stream.read(chunk, exception_on_overflow=False)
|
|
|
|
|
frame = np.frombuffer(frame, dtype=np.int16).astype(np.float32) / 32767 # [chunk]
|
|
|
|
|
queue.put(frame)
|
|
|
|
|
|
|
|
|
|
def _play_frame(stream, exit_event, queue, chunk):
|
|
|
|
|
|
|
|
|
|
while True:
|
|
|
|
|
if exit_event.is_set():
|
|
|
|
|
print(f'[INFO] play frame thread ends')
|
|
|
|
|
break
|
|
|
|
|
frame = queue.get()
|
|
|
|
|
frame = (frame * 32767).astype(np.int16).tobytes()
|
|
|
|
|
stream.write(frame, chunk)
|
2024-04-05 08:55:21 +08:00
|
|
|
|
#########################################################
|
|
|
|
|
|
2024-01-09 10:01:50 +08:00
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
import argparse
|
|
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
|
parser.add_argument('--wav', type=str, default='')
|
|
|
|
|
parser.add_argument('--play', action='store_true', help="play out the audio")
|
|
|
|
|
|
2024-04-03 15:08:38 +08:00
|
|
|
|
# parser.add_argument('--model', type=str, default='cpierse/wav2vec2-large-xlsr-53-esperanto')
|
2024-01-09 10:01:50 +08:00
|
|
|
|
# parser.add_argument('--model', type=str, default='facebook/wav2vec2-large-960h-lv60-self')
|
2024-04-03 15:08:38 +08:00
|
|
|
|
parser.add_argument('--model', type=str, default='facebook/hubert-large-ls960-ft')
|
2024-01-09 10:01:50 +08:00
|
|
|
|
|
|
|
|
|
parser.add_argument('--save_feats', action='store_true')
|
|
|
|
|
# audio FPS
|
|
|
|
|
parser.add_argument('--fps', type=int, default=50)
|
|
|
|
|
# sliding window left-middle-right length.
|
|
|
|
|
parser.add_argument('-l', type=int, default=10)
|
|
|
|
|
parser.add_argument('-m', type=int, default=50)
|
|
|
|
|
parser.add_argument('-r', type=int, default=10)
|
|
|
|
|
|
|
|
|
|
opt = parser.parse_args()
|
|
|
|
|
|
|
|
|
|
# fix
|
|
|
|
|
opt.asr_wav = opt.wav
|
|
|
|
|
opt.asr_play = opt.play
|
|
|
|
|
opt.asr_model = opt.model
|
|
|
|
|
opt.asr_save_feats = opt.save_feats
|
|
|
|
|
|
|
|
|
|
if 'deepspeech' in opt.asr_model:
|
|
|
|
|
raise ValueError("DeepSpeech features should not use this code to extract...")
|
|
|
|
|
|
|
|
|
|
with ASR(opt) as asr:
|
2024-06-30 09:41:31 +08:00
|
|
|
|
asr.run()
|
|
|
|
|
'''
|