113 lines
3.7 KiB
Python
113 lines
3.7 KiB
Python
|
import torch
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
import os
|
||
|
import sys
|
||
|
import cv2
|
||
|
import random
|
||
|
import datetime
|
||
|
import math
|
||
|
import argparse
|
||
|
import numpy as np
|
||
|
|
||
|
import scipy.io as sio
|
||
|
import zipfile
|
||
|
from .net_s3fd import s3fd
|
||
|
from .bbox import *
|
||
|
|
||
|
|
||
|
def detect(net, img, device):
|
||
|
img = img - np.array([104, 117, 123])
|
||
|
img = img.transpose(2, 0, 1)
|
||
|
img = img.reshape((1,) + img.shape)
|
||
|
|
||
|
if 'cuda' in device:
|
||
|
torch.backends.cudnn.benchmark = True
|
||
|
|
||
|
img = torch.from_numpy(img).float().to(device)
|
||
|
BB, CC, HH, WW = img.size()
|
||
|
with torch.no_grad():
|
||
|
olist = net(img)
|
||
|
|
||
|
bboxlist = []
|
||
|
for i in range(len(olist) // 2):
|
||
|
olist[i * 2] = F.softmax(olist[i * 2], dim=1)
|
||
|
olist = [oelem.data.cpu() for oelem in olist]
|
||
|
for i in range(len(olist) // 2):
|
||
|
ocls, oreg = olist[i * 2], olist[i * 2 + 1]
|
||
|
FB, FC, FH, FW = ocls.size() # feature map size
|
||
|
stride = 2**(i + 2) # 4,8,16,32,64,128
|
||
|
anchor = stride * 4
|
||
|
poss = zip(*np.where(ocls[:, 1, :, :] > 0.05))
|
||
|
for Iindex, hindex, windex in poss:
|
||
|
axc, ayc = stride / 2 + windex * stride, stride / 2 + hindex * stride
|
||
|
score = ocls[0, 1, hindex, windex]
|
||
|
loc = oreg[0, :, hindex, windex].contiguous().view(1, 4)
|
||
|
priors = torch.Tensor([[axc / 1.0, ayc / 1.0, stride * 4 / 1.0, stride * 4 / 1.0]])
|
||
|
variances = [0.1, 0.2]
|
||
|
box = decode(loc, priors, variances)
|
||
|
x1, y1, x2, y2 = box[0] * 1.0
|
||
|
# cv2.rectangle(imgshow,(int(x1),int(y1)),(int(x2),int(y2)),(0,0,255),1)
|
||
|
bboxlist.append([x1, y1, x2, y2, score])
|
||
|
bboxlist = np.array(bboxlist)
|
||
|
if 0 == len(bboxlist):
|
||
|
bboxlist = np.zeros((1, 5))
|
||
|
|
||
|
return bboxlist
|
||
|
|
||
|
def batch_detect(net, imgs, device):
|
||
|
imgs = imgs - np.array([104, 117, 123])
|
||
|
imgs = imgs.transpose(0, 3, 1, 2)
|
||
|
|
||
|
if 'cuda' in device:
|
||
|
torch.backends.cudnn.benchmark = True
|
||
|
|
||
|
imgs = torch.from_numpy(imgs).float().to(device)
|
||
|
BB, CC, HH, WW = imgs.size()
|
||
|
with torch.no_grad():
|
||
|
olist = net(imgs)
|
||
|
|
||
|
bboxlist = []
|
||
|
for i in range(len(olist) // 2):
|
||
|
olist[i * 2] = F.softmax(olist[i * 2], dim=1)
|
||
|
olist = [oelem.data.cpu() for oelem in olist]
|
||
|
for i in range(len(olist) // 2):
|
||
|
ocls, oreg = olist[i * 2], olist[i * 2 + 1]
|
||
|
FB, FC, FH, FW = ocls.size() # feature map size
|
||
|
stride = 2**(i + 2) # 4,8,16,32,64,128
|
||
|
anchor = stride * 4
|
||
|
poss = zip(*np.where(ocls[:, 1, :, :] > 0.05))
|
||
|
for Iindex, hindex, windex in poss:
|
||
|
axc, ayc = stride / 2 + windex * stride, stride / 2 + hindex * stride
|
||
|
score = ocls[:, 1, hindex, windex]
|
||
|
loc = oreg[:, :, hindex, windex].contiguous().view(BB, 1, 4)
|
||
|
priors = torch.Tensor([[axc / 1.0, ayc / 1.0, stride * 4 / 1.0, stride * 4 / 1.0]]).view(1, 1, 4)
|
||
|
variances = [0.1, 0.2]
|
||
|
box = batch_decode(loc, priors, variances)
|
||
|
box = box[:, 0] * 1.0
|
||
|
# cv2.rectangle(imgshow,(int(x1),int(y1)),(int(x2),int(y2)),(0,0,255),1)
|
||
|
bboxlist.append(torch.cat([box, score.unsqueeze(1)], 1).cpu().numpy())
|
||
|
bboxlist = np.array(bboxlist)
|
||
|
if 0 == len(bboxlist):
|
||
|
bboxlist = np.zeros((1, BB, 5))
|
||
|
|
||
|
return bboxlist
|
||
|
|
||
|
def flip_detect(net, img, device):
|
||
|
img = cv2.flip(img, 1)
|
||
|
b = detect(net, img, device)
|
||
|
|
||
|
bboxlist = np.zeros(b.shape)
|
||
|
bboxlist[:, 0] = img.shape[1] - b[:, 2]
|
||
|
bboxlist[:, 1] = b[:, 1]
|
||
|
bboxlist[:, 2] = img.shape[1] - b[:, 0]
|
||
|
bboxlist[:, 3] = b[:, 3]
|
||
|
bboxlist[:, 4] = b[:, 4]
|
||
|
return bboxlist
|
||
|
|
||
|
|
||
|
def pts_to_bb(pts):
|
||
|
min_x, min_y = np.min(pts, axis=0)
|
||
|
max_x, max_y = np.max(pts, axis=0)
|
||
|
return np.array([min_x, min_y, max_x, max_y])
|