155 lines
6.7 KiB
Python
155 lines
6.7 KiB
Python
|
import sys
|
|||
|
from face_detection import FaceAlignment,LandmarksType
|
|||
|
from os import listdir, path
|
|||
|
import subprocess
|
|||
|
import numpy as np
|
|||
|
import cv2
|
|||
|
import pickle
|
|||
|
import os
|
|||
|
import json
|
|||
|
from mmpose.apis import inference_topdown, init_model
|
|||
|
from mmpose.structures import merge_data_samples
|
|||
|
import torch
|
|||
|
from tqdm import tqdm
|
|||
|
|
|||
|
# initialize the mmpose model
|
|||
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|||
|
config_file = './musetalk/utils/dwpose/rtmpose-l_8xb32-270e_coco-ubody-wholebody-384x288.py'
|
|||
|
checkpoint_file = './models/dwpose/dw-ll_ucoco_384.pth'
|
|||
|
model = init_model(config_file, checkpoint_file, device=device)
|
|||
|
|
|||
|
# initialize the face detection model
|
|||
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|||
|
fa = FaceAlignment(LandmarksType._2D, flip_input=False,device=device)
|
|||
|
|
|||
|
# maker if the bbox is not sufficient
|
|||
|
coord_placeholder = (0.0,0.0,0.0,0.0)
|
|||
|
|
|||
|
def resize_landmark(landmark, w, h, new_w, new_h):
|
|||
|
w_ratio = new_w / w
|
|||
|
h_ratio = new_h / h
|
|||
|
landmark_norm = landmark / [w, h]
|
|||
|
landmark_resized = landmark_norm * [new_w, new_h]
|
|||
|
return landmark_resized
|
|||
|
|
|||
|
def read_imgs(img_list):
|
|||
|
frames = []
|
|||
|
print('reading images...')
|
|||
|
for img_path in tqdm(img_list):
|
|||
|
frame = cv2.imread(img_path)
|
|||
|
frames.append(frame)
|
|||
|
return frames
|
|||
|
|
|||
|
def get_bbox_range(img_list,upperbondrange =0):
|
|||
|
frames = read_imgs(img_list)
|
|||
|
batch_size_fa = 1
|
|||
|
batches = [frames[i:i + batch_size_fa] for i in range(0, len(frames), batch_size_fa)]
|
|||
|
coords_list = []
|
|||
|
landmarks = []
|
|||
|
if upperbondrange != 0:
|
|||
|
print('get key_landmark and face bounding boxes with the bbox_shift:',upperbondrange)
|
|||
|
else:
|
|||
|
print('get key_landmark and face bounding boxes with the default value')
|
|||
|
average_range_minus = []
|
|||
|
average_range_plus = []
|
|||
|
for fb in tqdm(batches):
|
|||
|
results = inference_topdown(model, np.asarray(fb)[0])
|
|||
|
results = merge_data_samples(results)
|
|||
|
keypoints = results.pred_instances.keypoints
|
|||
|
face_land_mark= keypoints[0][23:91]
|
|||
|
face_land_mark = face_land_mark.astype(np.int32)
|
|||
|
|
|||
|
# get bounding boxes by face detetion
|
|||
|
bbox = fa.get_detections_for_batch(np.asarray(fb))
|
|||
|
|
|||
|
# adjust the bounding box refer to landmark
|
|||
|
# Add the bounding box to a tuple and append it to the coordinates list
|
|||
|
for j, f in enumerate(bbox):
|
|||
|
if f is None: # no face in the image
|
|||
|
coords_list += [coord_placeholder]
|
|||
|
continue
|
|||
|
|
|||
|
half_face_coord = face_land_mark[29]#np.mean([face_land_mark[28], face_land_mark[29]], axis=0)
|
|||
|
range_minus = (face_land_mark[30]- face_land_mark[29])[1]
|
|||
|
range_plus = (face_land_mark[29]- face_land_mark[28])[1]
|
|||
|
average_range_minus.append(range_minus)
|
|||
|
average_range_plus.append(range_plus)
|
|||
|
if upperbondrange != 0:
|
|||
|
half_face_coord[1] = upperbondrange+half_face_coord[1] #手动调整 + 向下(偏29) - 向上(偏28)
|
|||
|
|
|||
|
text_range=f"Total frame:「{len(frames)}」 Manually adjust range : [ -{int(sum(average_range_minus) / len(average_range_minus))}~{int(sum(average_range_plus) / len(average_range_plus))} ] , the current value: {upperbondrange}"
|
|||
|
return text_range
|
|||
|
|
|||
|
|
|||
|
def get_landmark_and_bbox(img_list,upperbondrange =0):
|
|||
|
frames = read_imgs(img_list)
|
|||
|
batch_size_fa = 1
|
|||
|
batches = [frames[i:i + batch_size_fa] for i in range(0, len(frames), batch_size_fa)]
|
|||
|
coords_list = []
|
|||
|
landmarks = []
|
|||
|
if upperbondrange != 0:
|
|||
|
print('get key_landmark and face bounding boxes with the bbox_shift:',upperbondrange)
|
|||
|
else:
|
|||
|
print('get key_landmark and face bounding boxes with the default value')
|
|||
|
average_range_minus = []
|
|||
|
average_range_plus = []
|
|||
|
for fb in tqdm(batches):
|
|||
|
results = inference_topdown(model, np.asarray(fb)[0])
|
|||
|
results = merge_data_samples(results)
|
|||
|
keypoints = results.pred_instances.keypoints
|
|||
|
face_land_mark= keypoints[0][23:91]
|
|||
|
face_land_mark = face_land_mark.astype(np.int32)
|
|||
|
|
|||
|
# get bounding boxes by face detetion
|
|||
|
bbox = fa.get_detections_for_batch(np.asarray(fb))
|
|||
|
|
|||
|
# adjust the bounding box refer to landmark
|
|||
|
# Add the bounding box to a tuple and append it to the coordinates list
|
|||
|
for j, f in enumerate(bbox):
|
|||
|
if f is None: # no face in the image
|
|||
|
coords_list += [coord_placeholder]
|
|||
|
continue
|
|||
|
|
|||
|
half_face_coord = face_land_mark[29]#np.mean([face_land_mark[28], face_land_mark[29]], axis=0)
|
|||
|
range_minus = (face_land_mark[30]- face_land_mark[29])[1]
|
|||
|
range_plus = (face_land_mark[29]- face_land_mark[28])[1]
|
|||
|
average_range_minus.append(range_minus)
|
|||
|
average_range_plus.append(range_plus)
|
|||
|
if upperbondrange != 0:
|
|||
|
half_face_coord[1] = upperbondrange+half_face_coord[1] #手动调整 + 向下(偏29) - 向上(偏28)
|
|||
|
half_face_dist = np.max(face_land_mark[:,1]) - half_face_coord[1]
|
|||
|
upper_bond = half_face_coord[1]-half_face_dist
|
|||
|
|
|||
|
f_landmark = (np.min(face_land_mark[:, 0]),int(upper_bond),np.max(face_land_mark[:, 0]),np.max(face_land_mark[:,1]))
|
|||
|
x1, y1, x2, y2 = f_landmark
|
|||
|
|
|||
|
if y2-y1<=0 or x2-x1<=0 or x1<0: # if the landmark bbox is not suitable, reuse the bbox
|
|||
|
coords_list += [f]
|
|||
|
w,h = f[2]-f[0], f[3]-f[1]
|
|||
|
print("error bbox:",f)
|
|||
|
else:
|
|||
|
coords_list += [f_landmark]
|
|||
|
|
|||
|
print("********************************************bbox_shift parameter adjustment**********************************************************")
|
|||
|
print(f"Total frame:「{len(frames)}」 Manually adjust range : [ -{int(sum(average_range_minus) / len(average_range_minus))}~{int(sum(average_range_plus) / len(average_range_plus))} ] , the current value: {upperbondrange}")
|
|||
|
print("*************************************************************************************************************************************")
|
|||
|
return coords_list,frames
|
|||
|
|
|||
|
|
|||
|
if __name__ == "__main__":
|
|||
|
img_list = ["./results/lyria/00000.png","./results/lyria/00001.png","./results/lyria/00002.png","./results/lyria/00003.png"]
|
|||
|
crop_coord_path = "./coord_face.pkl"
|
|||
|
coords_list,full_frames = get_landmark_and_bbox(img_list)
|
|||
|
with open(crop_coord_path, 'wb') as f:
|
|||
|
pickle.dump(coords_list, f)
|
|||
|
|
|||
|
for bbox, frame in zip(coords_list,full_frames):
|
|||
|
if bbox == coord_placeholder:
|
|||
|
continue
|
|||
|
x1, y1, x2, y2 = bbox
|
|||
|
crop_frame = frame[y1:y2, x1:x2]
|
|||
|
print('Cropped shape', crop_frame.shape)
|
|||
|
|
|||
|
#cv2.imwrite(path.join(save_dir, '{}.png'.format(i)),full_frames[i][0][y1:y2, x1:x2])
|
|||
|
print(coords_list)
|