60 lines
1.8 KiB
Python
60 lines
1.8 KiB
Python
|
import os
|
||
|
import cv2
|
||
|
from torch.utils.model_zoo import load_url
|
||
|
|
||
|
from ..core import FaceDetector
|
||
|
|
||
|
from .net_s3fd import s3fd
|
||
|
from .bbox import *
|
||
|
from .detect import *
|
||
|
|
||
|
models_urls = {
|
||
|
's3fd': 'https://www.adrianbulat.com/downloads/python-fan/s3fd-619a316812.pth',
|
||
|
}
|
||
|
|
||
|
|
||
|
class SFDDetector(FaceDetector):
|
||
|
def __init__(self, device, path_to_detector=os.path.join(os.path.dirname(os.path.abspath(__file__)), 's3fd.pth'), verbose=False):
|
||
|
super(SFDDetector, self).__init__(device, verbose)
|
||
|
|
||
|
# Initialise the face detector
|
||
|
if not os.path.isfile(path_to_detector):
|
||
|
model_weights = load_url(models_urls['s3fd'])
|
||
|
else:
|
||
|
model_weights = torch.load(path_to_detector)
|
||
|
|
||
|
self.face_detector = s3fd()
|
||
|
self.face_detector.load_state_dict(model_weights)
|
||
|
self.face_detector.to(device)
|
||
|
self.face_detector.eval()
|
||
|
|
||
|
def detect_from_image(self, tensor_or_path):
|
||
|
image = self.tensor_or_path_to_ndarray(tensor_or_path)
|
||
|
|
||
|
bboxlist = detect(self.face_detector, image, device=self.device)
|
||
|
keep = nms(bboxlist, 0.3)
|
||
|
bboxlist = bboxlist[keep, :]
|
||
|
bboxlist = [x for x in bboxlist if x[-1] > 0.5]
|
||
|
|
||
|
return bboxlist
|
||
|
|
||
|
def detect_from_batch(self, images):
|
||
|
bboxlists = batch_detect(self.face_detector, images, device=self.device)
|
||
|
keeps = [nms(bboxlists[:, i, :], 0.3) for i in range(bboxlists.shape[1])]
|
||
|
bboxlists = [bboxlists[keep, i, :] for i, keep in enumerate(keeps)]
|
||
|
bboxlists = [[x for x in bboxlist if x[-1] > 0.5] for bboxlist in bboxlists]
|
||
|
|
||
|
return bboxlists
|
||
|
|
||
|
@property
|
||
|
def reference_scale(self):
|
||
|
return 195
|
||
|
|
||
|
@property
|
||
|
def reference_x_shift(self):
|
||
|
return 0
|
||
|
|
||
|
@property
|
||
|
def reference_y_shift(self):
|
||
|
return 0
|