livetalking/musetalk/utils/dwpose/rtmpose-l_8xb32-270e_coco-u...

258 lines
7.2 KiB
Python
Raw Normal View History

2024-05-25 06:33:59 +08:00
#_base_ = ['../../../_base_/default_runtime.py']
_base_ = ['default_runtime.py']
# runtime
max_epochs = 270
stage2_num_epochs = 30
base_lr = 4e-3
train_batch_size = 32
val_batch_size = 32
train_cfg = dict(max_epochs=max_epochs, val_interval=10)
randomness = dict(seed=21)
# optimizer
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(type='AdamW', lr=base_lr, weight_decay=0.05),
paramwise_cfg=dict(
norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True))
# learning rate
param_scheduler = [
dict(
type='LinearLR',
start_factor=1.0e-5,
by_epoch=False,
begin=0,
end=1000),
dict(
# use cosine lr from 150 to 300 epoch
type='CosineAnnealingLR',
eta_min=base_lr * 0.05,
begin=max_epochs // 2,
end=max_epochs,
T_max=max_epochs // 2,
by_epoch=True,
convert_to_iter_based=True),
]
# automatically scaling LR based on the actual training batch size
auto_scale_lr = dict(base_batch_size=512)
# codec settings
codec = dict(
type='SimCCLabel',
input_size=(288, 384),
sigma=(6., 6.93),
simcc_split_ratio=2.0,
normalize=False,
use_dark=False)
# model settings
model = dict(
type='TopdownPoseEstimator',
data_preprocessor=dict(
type='PoseDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True),
backbone=dict(
_scope_='mmdet',
type='CSPNeXt',
arch='P5',
expand_ratio=0.5,
deepen_factor=1.,
widen_factor=1.,
out_indices=(4, ),
channel_attention=True,
norm_cfg=dict(type='SyncBN'),
act_cfg=dict(type='SiLU'),
init_cfg=dict(
type='Pretrained',
prefix='backbone.',
checkpoint='https://download.openmmlab.com/mmpose/v1/projects/'
'rtmpose/cspnext-l_udp-aic-coco_210e-256x192-273b7631_20230130.pth' # noqa: E501
)),
head=dict(
type='RTMCCHead',
in_channels=1024,
out_channels=133,
input_size=codec['input_size'],
in_featuremap_size=(9, 12),
simcc_split_ratio=codec['simcc_split_ratio'],
final_layer_kernel_size=7,
gau_cfg=dict(
hidden_dims=256,
s=128,
expansion_factor=2,
dropout_rate=0.,
drop_path=0.,
act_fn='SiLU',
use_rel_bias=False,
pos_enc=False),
loss=dict(
type='KLDiscretLoss',
use_target_weight=True,
beta=10.,
label_softmax=True),
decoder=codec),
test_cfg=dict(flip_test=True, ))
# base dataset settings
dataset_type = 'UBody2dDataset'
data_mode = 'topdown'
data_root = 'data/UBody/'
backend_args = dict(backend='local')
scenes = [
'Magic_show', 'Entertainment', 'ConductMusic', 'Online_class', 'TalkShow',
'Speech', 'Fitness', 'Interview', 'Olympic', 'TVShow', 'Singing',
'SignLanguage', 'Movie', 'LiveVlog', 'VideoConference'
]
train_datasets = [
dict(
type='CocoWholeBodyDataset',
data_root='data/coco/',
data_mode=data_mode,
ann_file='annotations/coco_wholebody_train_v1.0.json',
data_prefix=dict(img='train2017/'),
pipeline=[])
]
for scene in scenes:
train_dataset = dict(
type=dataset_type,
data_root=data_root,
data_mode=data_mode,
ann_file=f'annotations/{scene}/train_annotations.json',
data_prefix=dict(img='images/'),
pipeline=[],
sample_interval=10)
train_datasets.append(train_dataset)
# pipelines
train_pipeline = [
dict(type='LoadImage', backend_args=backend_args),
dict(type='GetBBoxCenterScale'),
dict(type='RandomFlip', direction='horizontal'),
dict(type='RandomHalfBody'),
dict(
type='RandomBBoxTransform', scale_factor=[0.5, 1.5], rotate_factor=90),
dict(type='TopdownAffine', input_size=codec['input_size']),
dict(type='mmdet.YOLOXHSVRandomAug'),
dict(
type='Albumentation',
transforms=[
dict(type='Blur', p=0.1),
dict(type='MedianBlur', p=0.1),
dict(
type='CoarseDropout',
max_holes=1,
max_height=0.4,
max_width=0.4,
min_holes=1,
min_height=0.2,
min_width=0.2,
p=1.0),
]),
dict(type='GenerateTarget', encoder=codec),
dict(type='PackPoseInputs')
]
val_pipeline = [
dict(type='LoadImage', backend_args=backend_args),
dict(type='GetBBoxCenterScale'),
dict(type='TopdownAffine', input_size=codec['input_size']),
dict(type='PackPoseInputs')
]
train_pipeline_stage2 = [
dict(type='LoadImage', backend_args=backend_args),
dict(type='GetBBoxCenterScale'),
dict(type='RandomFlip', direction='horizontal'),
dict(type='RandomHalfBody'),
dict(
type='RandomBBoxTransform',
shift_factor=0.,
scale_factor=[0.5, 1.5],
rotate_factor=90),
dict(type='TopdownAffine', input_size=codec['input_size']),
dict(type='mmdet.YOLOXHSVRandomAug'),
dict(
type='Albumentation',
transforms=[
dict(type='Blur', p=0.1),
dict(type='MedianBlur', p=0.1),
dict(
type='CoarseDropout',
max_holes=1,
max_height=0.4,
max_width=0.4,
min_holes=1,
min_height=0.2,
min_width=0.2,
p=0.5),
]),
dict(type='GenerateTarget', encoder=codec),
dict(type='PackPoseInputs')
]
# data loaders
train_dataloader = dict(
batch_size=train_batch_size,
num_workers=10,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type='CombinedDataset',
metainfo=dict(from_file='configs/_base_/datasets/coco_wholebody.py'),
datasets=train_datasets,
pipeline=train_pipeline,
test_mode=False,
))
val_dataloader = dict(
batch_size=val_batch_size,
num_workers=10,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False, round_up=False),
dataset=dict(
type='CocoWholeBodyDataset',
data_root=data_root,
data_mode=data_mode,
ann_file='data/coco/annotations/coco_wholebody_val_v1.0.json',
bbox_file='data/coco/person_detection_results/'
'COCO_val2017_detections_AP_H_56_person.json',
data_prefix=dict(img='coco/val2017/'),
test_mode=True,
pipeline=val_pipeline,
))
test_dataloader = val_dataloader
# hooks
default_hooks = dict(
checkpoint=dict(
save_best='coco-wholebody/AP', rule='greater', max_keep_ckpts=1))
custom_hooks = [
dict(
type='EMAHook',
ema_type='ExpMomentumEMA',
momentum=0.0002,
update_buffers=True,
priority=49),
dict(
type='mmdet.PipelineSwitchHook',
switch_epoch=max_epochs - stage2_num_epochs,
switch_pipeline=train_pipeline_stage2)
]
# evaluators
val_evaluator = dict(
type='CocoWholeBodyMetric',
ann_file='data/coco/annotations/coco_wholebody_val_v1.0.json')
test_evaluator = val_evaluator