240 lines
9.9 KiB
Python
240 lines
9.9 KiB
Python
|
from __future__ import print_function
|
|||
|
import os
|
|||
|
import torch
|
|||
|
from torch.utils.model_zoo import load_url
|
|||
|
from enum import Enum
|
|||
|
import numpy as np
|
|||
|
import cv2
|
|||
|
try:
|
|||
|
import urllib.request as request_file
|
|||
|
except BaseException:
|
|||
|
import urllib as request_file
|
|||
|
|
|||
|
from .models import FAN, ResNetDepth
|
|||
|
from .utils import *
|
|||
|
|
|||
|
|
|||
|
class LandmarksType(Enum):
|
|||
|
"""Enum class defining the type of landmarks to detect.
|
|||
|
|
|||
|
``_2D`` - the detected points ``(x,y)`` are detected in a 2D space and follow the visible contour of the face
|
|||
|
``_2halfD`` - this points represent the projection of the 3D points into 3D
|
|||
|
``_3D`` - detect the points ``(x,y,z)``` in a 3D space
|
|||
|
|
|||
|
"""
|
|||
|
_2D = 1
|
|||
|
_2halfD = 2
|
|||
|
_3D = 3
|
|||
|
|
|||
|
|
|||
|
class NetworkSize(Enum):
|
|||
|
# TINY = 1
|
|||
|
# SMALL = 2
|
|||
|
# MEDIUM = 3
|
|||
|
LARGE = 4
|
|||
|
|
|||
|
def __new__(cls, value):
|
|||
|
member = object.__new__(cls)
|
|||
|
member._value_ = value
|
|||
|
return member
|
|||
|
|
|||
|
def __int__(self):
|
|||
|
return self.value
|
|||
|
|
|||
|
|
|||
|
|
|||
|
class FaceAlignment:
|
|||
|
def __init__(self, landmarks_type, network_size=NetworkSize.LARGE,
|
|||
|
device='cuda', flip_input=False, face_detector='sfd', verbose=False):
|
|||
|
self.device = device
|
|||
|
self.flip_input = flip_input
|
|||
|
self.landmarks_type = landmarks_type
|
|||
|
self.verbose = verbose
|
|||
|
|
|||
|
network_size = int(network_size)
|
|||
|
|
|||
|
if 'cuda' in device:
|
|||
|
torch.backends.cudnn.benchmark = True
|
|||
|
# torch.backends.cuda.matmul.allow_tf32 = False
|
|||
|
# torch.backends.cudnn.benchmark = True
|
|||
|
# torch.backends.cudnn.deterministic = False
|
|||
|
# torch.backends.cudnn.allow_tf32 = True
|
|||
|
print('cuda start')
|
|||
|
|
|||
|
|
|||
|
# Get the face detector
|
|||
|
face_detector_module = __import__('face_detection.detection.' + face_detector,
|
|||
|
globals(), locals(), [face_detector], 0)
|
|||
|
|
|||
|
self.face_detector = face_detector_module.FaceDetector(device=device, verbose=verbose)
|
|||
|
|
|||
|
def get_detections_for_batch(self, images):
|
|||
|
images = images[..., ::-1]
|
|||
|
detected_faces = self.face_detector.detect_from_batch(images.copy())
|
|||
|
results = []
|
|||
|
|
|||
|
for i, d in enumerate(detected_faces):
|
|||
|
if len(d) == 0:
|
|||
|
results.append(None)
|
|||
|
continue
|
|||
|
d = d[0]
|
|||
|
d = np.clip(d, 0, None)
|
|||
|
|
|||
|
x1, y1, x2, y2 = map(int, d[:-1])
|
|||
|
results.append((x1, y1, x2, y2))
|
|||
|
|
|||
|
return results
|
|||
|
|
|||
|
|
|||
|
class YOLOv8_face:
|
|||
|
def __init__(self, path = 'face_detection/weights/yolov8n-face.onnx', conf_thres=0.2, iou_thres=0.5):
|
|||
|
self.conf_threshold = conf_thres
|
|||
|
self.iou_threshold = iou_thres
|
|||
|
self.class_names = ['face']
|
|||
|
self.num_classes = len(self.class_names)
|
|||
|
# Initialize model
|
|||
|
self.net = cv2.dnn.readNet(path)
|
|||
|
self.input_height = 640
|
|||
|
self.input_width = 640
|
|||
|
self.reg_max = 16
|
|||
|
|
|||
|
self.project = np.arange(self.reg_max)
|
|||
|
self.strides = (8, 16, 32)
|
|||
|
self.feats_hw = [(math.ceil(self.input_height / self.strides[i]), math.ceil(self.input_width / self.strides[i])) for i in range(len(self.strides))]
|
|||
|
self.anchors = self.make_anchors(self.feats_hw)
|
|||
|
|
|||
|
def make_anchors(self, feats_hw, grid_cell_offset=0.5):
|
|||
|
"""Generate anchors from features."""
|
|||
|
anchor_points = {}
|
|||
|
for i, stride in enumerate(self.strides):
|
|||
|
h,w = feats_hw[i]
|
|||
|
x = np.arange(0, w) + grid_cell_offset # shift x
|
|||
|
y = np.arange(0, h) + grid_cell_offset # shift y
|
|||
|
sx, sy = np.meshgrid(x, y)
|
|||
|
# sy, sx = np.meshgrid(y, x)
|
|||
|
anchor_points[stride] = np.stack((sx, sy), axis=-1).reshape(-1, 2)
|
|||
|
return anchor_points
|
|||
|
|
|||
|
def softmax(self, x, axis=1):
|
|||
|
x_exp = np.exp(x)
|
|||
|
# 如果是列向量,则axis=0
|
|||
|
x_sum = np.sum(x_exp, axis=axis, keepdims=True)
|
|||
|
s = x_exp / x_sum
|
|||
|
return s
|
|||
|
|
|||
|
def resize_image(self, srcimg, keep_ratio=True):
|
|||
|
top, left, newh, neww = 0, 0, self.input_width, self.input_height
|
|||
|
if keep_ratio and srcimg.shape[0] != srcimg.shape[1]:
|
|||
|
hw_scale = srcimg.shape[0] / srcimg.shape[1]
|
|||
|
if hw_scale > 1:
|
|||
|
newh, neww = self.input_height, int(self.input_width / hw_scale)
|
|||
|
img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA)
|
|||
|
left = int((self.input_width - neww) * 0.5)
|
|||
|
img = cv2.copyMakeBorder(img, 0, 0, left, self.input_width - neww - left, cv2.BORDER_CONSTANT,
|
|||
|
value=(0, 0, 0)) # add border
|
|||
|
else:
|
|||
|
newh, neww = int(self.input_height * hw_scale), self.input_width
|
|||
|
img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA)
|
|||
|
top = int((self.input_height - newh) * 0.5)
|
|||
|
img = cv2.copyMakeBorder(img, top, self.input_height - newh - top, 0, 0, cv2.BORDER_CONSTANT,
|
|||
|
value=(0, 0, 0))
|
|||
|
else:
|
|||
|
img = cv2.resize(srcimg, (self.input_width, self.input_height), interpolation=cv2.INTER_AREA)
|
|||
|
return img, newh, neww, top, left
|
|||
|
|
|||
|
def detect(self, srcimg):
|
|||
|
input_img, newh, neww, padh, padw = self.resize_image(cv2.cvtColor(srcimg, cv2.COLOR_BGR2RGB))
|
|||
|
scale_h, scale_w = srcimg.shape[0]/newh, srcimg.shape[1]/neww
|
|||
|
input_img = input_img.astype(np.float32) / 255.0
|
|||
|
|
|||
|
blob = cv2.dnn.blobFromImage(input_img)
|
|||
|
self.net.setInput(blob)
|
|||
|
outputs = self.net.forward(self.net.getUnconnectedOutLayersNames())
|
|||
|
# if isinstance(outputs, tuple):
|
|||
|
# outputs = list(outputs)
|
|||
|
# if float(cv2.__version__[:3])>=4.7:
|
|||
|
# outputs = [outputs[2], outputs[0], outputs[1]] ###opencv4.7需要这一步,opencv4.5不需要
|
|||
|
# Perform inference on the image
|
|||
|
det_bboxes, det_conf, det_classid, landmarks = self.post_process(outputs, scale_h, scale_w, padh, padw)
|
|||
|
return det_bboxes, det_conf, det_classid, landmarks
|
|||
|
|
|||
|
def post_process(self, preds, scale_h, scale_w, padh, padw):
|
|||
|
bboxes, scores, landmarks = [], [], []
|
|||
|
for i, pred in enumerate(preds):
|
|||
|
stride = int(self.input_height/pred.shape[2])
|
|||
|
pred = pred.transpose((0, 2, 3, 1))
|
|||
|
|
|||
|
box = pred[..., :self.reg_max * 4]
|
|||
|
cls = 1 / (1 + np.exp(-pred[..., self.reg_max * 4:-15])).reshape((-1,1))
|
|||
|
kpts = pred[..., -15:].reshape((-1,15)) ### x1,y1,score1, ..., x5,y5,score5
|
|||
|
|
|||
|
# tmp = box.reshape(self.feats_hw[i][0], self.feats_hw[i][1], 4, self.reg_max)
|
|||
|
tmp = box.reshape(-1, 4, self.reg_max)
|
|||
|
bbox_pred = self.softmax(tmp, axis=-1)
|
|||
|
bbox_pred = np.dot(bbox_pred, self.project).reshape((-1,4))
|
|||
|
|
|||
|
bbox = self.distance2bbox(self.anchors[stride], bbox_pred, max_shape=(self.input_height, self.input_width)) * stride
|
|||
|
kpts[:, 0::3] = (kpts[:, 0::3] * 2.0 + (self.anchors[stride][:, 0].reshape((-1,1)) - 0.5)) * stride
|
|||
|
kpts[:, 1::3] = (kpts[:, 1::3] * 2.0 + (self.anchors[stride][:, 1].reshape((-1,1)) - 0.5)) * stride
|
|||
|
kpts[:, 2::3] = 1 / (1+np.exp(-kpts[:, 2::3]))
|
|||
|
|
|||
|
bbox -= np.array([[padw, padh, padw, padh]]) ###合理使用广播法则
|
|||
|
bbox *= np.array([[scale_w, scale_h, scale_w, scale_h]])
|
|||
|
kpts -= np.tile(np.array([padw, padh, 0]), 5).reshape((1,15))
|
|||
|
kpts *= np.tile(np.array([scale_w, scale_h, 1]), 5).reshape((1,15))
|
|||
|
|
|||
|
bboxes.append(bbox)
|
|||
|
scores.append(cls)
|
|||
|
landmarks.append(kpts)
|
|||
|
|
|||
|
bboxes = np.concatenate(bboxes, axis=0)
|
|||
|
scores = np.concatenate(scores, axis=0)
|
|||
|
landmarks = np.concatenate(landmarks, axis=0)
|
|||
|
|
|||
|
bboxes_wh = bboxes.copy()
|
|||
|
bboxes_wh[:, 2:4] = bboxes[:, 2:4] - bboxes[:, 0:2] ####xywh
|
|||
|
classIds = np.argmax(scores, axis=1)
|
|||
|
confidences = np.max(scores, axis=1) ####max_class_confidence
|
|||
|
|
|||
|
mask = confidences>self.conf_threshold
|
|||
|
bboxes_wh = bboxes_wh[mask] ###合理使用广播法则
|
|||
|
confidences = confidences[mask]
|
|||
|
classIds = classIds[mask]
|
|||
|
landmarks = landmarks[mask]
|
|||
|
|
|||
|
indices = cv2.dnn.NMSBoxes(bboxes_wh.tolist(), confidences.tolist(), self.conf_threshold,
|
|||
|
self.iou_threshold).flatten()
|
|||
|
if len(indices) > 0:
|
|||
|
mlvl_bboxes = bboxes_wh[indices]
|
|||
|
confidences = confidences[indices]
|
|||
|
classIds = classIds[indices]
|
|||
|
landmarks = landmarks[indices]
|
|||
|
return mlvl_bboxes, confidences, classIds, landmarks
|
|||
|
else:
|
|||
|
print('nothing detect')
|
|||
|
return np.array([]), np.array([]), np.array([]), np.array([])
|
|||
|
|
|||
|
def distance2bbox(self, points, distance, max_shape=None):
|
|||
|
x1 = points[:, 0] - distance[:, 0]
|
|||
|
y1 = points[:, 1] - distance[:, 1]
|
|||
|
x2 = points[:, 0] + distance[:, 2]
|
|||
|
y2 = points[:, 1] + distance[:, 3]
|
|||
|
if max_shape is not None:
|
|||
|
x1 = np.clip(x1, 0, max_shape[1])
|
|||
|
y1 = np.clip(y1, 0, max_shape[0])
|
|||
|
x2 = np.clip(x2, 0, max_shape[1])
|
|||
|
y2 = np.clip(y2, 0, max_shape[0])
|
|||
|
return np.stack([x1, y1, x2, y2], axis=-1)
|
|||
|
|
|||
|
def draw_detections(self, image, boxes, scores, kpts):
|
|||
|
for box, score, kp in zip(boxes, scores, kpts):
|
|||
|
x, y, w, h = box.astype(int)
|
|||
|
# Draw rectangle
|
|||
|
cv2.rectangle(image, (x, y), (x + w, y + h), (0, 0, 255), thickness=3)
|
|||
|
cv2.putText(image, "face:"+str(round(score,2)), (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), thickness=2)
|
|||
|
for i in range(5):
|
|||
|
cv2.circle(image, (int(kp[i * 3]), int(kp[i * 3 + 1])), 4, (0, 255, 0), thickness=-1)
|
|||
|
# cv2.putText(image, str(i), (int(kp[i * 3]), int(kp[i * 3 + 1]) - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), thickness=1)
|
|||
|
return image
|
|||
|
|
|||
|
ROOT = os.path.dirname(os.path.abspath(__file__))
|