148 lines
5.3 KiB
Python
148 lines
5.3 KiB
Python
|
from diffusers import AutoencoderKL
|
||
|
import torch
|
||
|
import torchvision.transforms as transforms
|
||
|
import torch.nn.functional as F
|
||
|
import cv2
|
||
|
import numpy as np
|
||
|
from PIL import Image
|
||
|
import os
|
||
|
|
||
|
class VAE():
|
||
|
"""
|
||
|
VAE (Variational Autoencoder) class for image processing.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, model_path="./models/sd-vae-ft-mse/", resized_img=256, use_float16=False):
|
||
|
"""
|
||
|
Initialize the VAE instance.
|
||
|
|
||
|
:param model_path: Path to the trained model.
|
||
|
:param resized_img: The size to which images are resized.
|
||
|
:param use_float16: Whether to use float16 precision.
|
||
|
"""
|
||
|
self.model_path = model_path
|
||
|
self.vae = AutoencoderKL.from_pretrained(self.model_path)
|
||
|
|
||
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||
|
self.vae.to(self.device)
|
||
|
|
||
|
if use_float16:
|
||
|
self.vae = self.vae.half()
|
||
|
self._use_float16 = True
|
||
|
else:
|
||
|
self._use_float16 = False
|
||
|
|
||
|
self.scaling_factor = self.vae.config.scaling_factor
|
||
|
self.transform = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
||
|
self._resized_img = resized_img
|
||
|
self._mask_tensor = self.get_mask_tensor()
|
||
|
|
||
|
def get_mask_tensor(self):
|
||
|
"""
|
||
|
Creates a mask tensor for image processing.
|
||
|
:return: A mask tensor.
|
||
|
"""
|
||
|
mask_tensor = torch.zeros((self._resized_img,self._resized_img))
|
||
|
mask_tensor[:self._resized_img//2,:] = 1
|
||
|
mask_tensor[mask_tensor< 0.5] = 0
|
||
|
mask_tensor[mask_tensor>= 0.5] = 1
|
||
|
return mask_tensor
|
||
|
|
||
|
def preprocess_img(self,img_name,half_mask=False):
|
||
|
"""
|
||
|
Preprocess an image for the VAE.
|
||
|
|
||
|
:param img_name: The image file path or a list of image file paths.
|
||
|
:param half_mask: Whether to apply a half mask to the image.
|
||
|
:return: A preprocessed image tensor.
|
||
|
"""
|
||
|
window = []
|
||
|
if isinstance(img_name, str):
|
||
|
window_fnames = [img_name]
|
||
|
for fname in window_fnames:
|
||
|
img = cv2.imread(fname)
|
||
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
||
|
img = cv2.resize(img, (self._resized_img, self._resized_img),
|
||
|
interpolation=cv2.INTER_LANCZOS4)
|
||
|
window.append(img)
|
||
|
else:
|
||
|
img = cv2.cvtColor(img_name, cv2.COLOR_BGR2RGB)
|
||
|
window.append(img)
|
||
|
|
||
|
x = np.asarray(window) / 255.
|
||
|
x = np.transpose(x, (3, 0, 1, 2))
|
||
|
x = torch.squeeze(torch.FloatTensor(x))
|
||
|
if half_mask:
|
||
|
x = x * (self._mask_tensor>0.5)
|
||
|
x = self.transform(x)
|
||
|
|
||
|
x = x.unsqueeze(0) # [1, 3, 256, 256] torch tensor
|
||
|
x = x.to(self.vae.device)
|
||
|
|
||
|
return x
|
||
|
|
||
|
def encode_latents(self,image):
|
||
|
"""
|
||
|
Encode an image into latent variables.
|
||
|
|
||
|
:param image: The image tensor to encode.
|
||
|
:return: The encoded latent variables.
|
||
|
"""
|
||
|
with torch.no_grad():
|
||
|
init_latent_dist = self.vae.encode(image.to(self.vae.dtype)).latent_dist
|
||
|
init_latents = self.scaling_factor * init_latent_dist.sample()
|
||
|
return init_latents
|
||
|
|
||
|
def decode_latents(self, latents):
|
||
|
"""
|
||
|
Decode latent variables back into an image.
|
||
|
:param latents: The latent variables to decode.
|
||
|
:return: A NumPy array representing the decoded image.
|
||
|
"""
|
||
|
latents = (1/ self.scaling_factor) * latents
|
||
|
image = self.vae.decode(latents.to(self.vae.dtype)).sample
|
||
|
image = (image / 2 + 0.5).clamp(0, 1)
|
||
|
image = image.detach().cpu().permute(0, 2, 3, 1).float().numpy()
|
||
|
image = (image * 255).round().astype("uint8")
|
||
|
image = image[...,::-1] # RGB to BGR
|
||
|
return image
|
||
|
|
||
|
def get_latents_for_unet(self,img):
|
||
|
"""
|
||
|
Prepare latent variables for a U-Net model.
|
||
|
:param img: The image to process.
|
||
|
:return: A concatenated tensor of latents for U-Net input.
|
||
|
"""
|
||
|
|
||
|
ref_image = self.preprocess_img(img,half_mask=True) # [1, 3, 256, 256] RGB, torch tensor
|
||
|
masked_latents = self.encode_latents(ref_image) # [1, 4, 32, 32], torch tensor
|
||
|
ref_image = self.preprocess_img(img,half_mask=False) # [1, 3, 256, 256] RGB, torch tensor
|
||
|
ref_latents = self.encode_latents(ref_image) # [1, 4, 32, 32], torch tensor
|
||
|
latent_model_input = torch.cat([masked_latents, ref_latents], dim=1)
|
||
|
return latent_model_input
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
vae_mode_path = "./models/sd-vae-ft-mse/"
|
||
|
vae = VAE(model_path = vae_mode_path,use_float16=False)
|
||
|
img_path = "./results/sun001_crop/00000.png"
|
||
|
|
||
|
crop_imgs_path = "./results/sun001_crop/"
|
||
|
latents_out_path = "./results/latents/"
|
||
|
if not os.path.exists(latents_out_path):
|
||
|
os.mkdir(latents_out_path)
|
||
|
|
||
|
files = os.listdir(crop_imgs_path)
|
||
|
files.sort()
|
||
|
files = [file for file in files if file.split(".")[-1] == "png"]
|
||
|
|
||
|
for file in files:
|
||
|
index = file.split(".")[0]
|
||
|
img_path = crop_imgs_path + file
|
||
|
latents = vae.get_latents_for_unet(img_path)
|
||
|
print(img_path,"latents",latents.size())
|
||
|
#torch.save(latents,os.path.join(latents_out_path,index+".pt"))
|
||
|
#reload_tensor = torch.load('tensor.pt')
|
||
|
#print(reload_tensor.size())
|
||
|
|
||
|
|
||
|
|