livetalking/llm/LLM.py

52 lines
2.1 KiB
Python
Raw Normal View History

2024-01-27 19:38:13 +08:00
from llm.Qwen import Qwen
from llm.Gemini import Gemini
from llm.ChatGPT import ChatGPT
2024-04-03 20:33:40 +08:00
from llm.VllmGPT import VllmGPT
2024-01-27 19:38:13 +08:00
def test_Qwen(question = "如何应对压力?", mode='offline', model_path="Qwen/Qwen-1_8B-Chat"):
llm = Qwen(mode, model_path)
answer = llm.generate(question)
print(answer)
def test_Gemini(question = "如何应对压力?", model_path='gemini-pro', api_key=None, proxy_url=None):
llm = Gemini(model_path, api_key, proxy_url)
answer = llm.generate(question)
print(answer)
class LLM:
def __init__(self, mode='offline'):
self.mode = mode
def init_model(self, model_name, model_path, api_key=None, proxy_url=None):
2024-04-03 20:33:40 +08:00
if model_name not in ['Qwen', 'Gemini', 'ChatGPT', 'VllmGPT']:
raise ValueError("model_name must be 'ChatGPT', 'VllmGPT', 'Qwen', or 'Gemini'(其他模型还未集成)")
2024-01-27 19:38:13 +08:00
if model_name == 'Gemini':
llm = Gemini(model_path, api_key, proxy_url)
elif model_name == 'ChatGPT':
llm = ChatGPT(model_path, api_key=api_key)
elif model_name == 'Qwen':
llm = Qwen(self.mode, model_path)
2024-04-03 20:33:40 +08:00
elif model_name == 'VllmGPT':
llm = VllmGPT()
2024-01-27 19:38:13 +08:00
return llm
def test_Qwen(self, question="如何应对压力?", model_path="Qwen/Qwen-1_8B-Chat"):
llm = Qwen(self.mode, model_path)
answer = llm.generate(question)
print(answer)
def test_Gemini(self, question="如何应对压力?", model_path='gemini-pro', api_key=None, proxy_url=None):
llm = Gemini(model_path, api_key, proxy_url)
answer = llm.chat(question)
print(answer)
if __name__ == '__main__':
2024-04-03 20:33:40 +08:00
# llm = LLM()
# llm.test_Gemini(api_key='你的API Key', proxy_url=None)
2024-01-27 19:38:13 +08:00
# llm = LLM().init_model('Gemini', model_path= 'gemini-pro',api_key='AIzaSyBWAWfT8zsyAZcRIXLS5Vzlw8KKCN9qsAg', proxy_url='http://172.31.71.58:7890')
# response = llm.chat("如何应对压力?")
2024-04-03 20:33:40 +08:00
llm = LLM().init_model('VllmGPT', model_path= 'THUDM/chatglm3-6b',api_key='', proxy_url='http://172.31.71.58:7890')
response = llm.chat("如何应对压力?")
2024-01-27 19:38:13 +08:00
# print(response)