tts接口准备
This commit is contained in:
parent
f5640ef197
commit
1ebd0c90b6
|
@ -0,0 +1,315 @@
|
||||||
|
import asyncio
|
||||||
|
import json
|
||||||
|
import websockets
|
||||||
|
import time
|
||||||
|
import logging
|
||||||
|
import tracemalloc
|
||||||
|
import numpy as np
|
||||||
|
import argparse
|
||||||
|
import ssl
|
||||||
|
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument("--host",
|
||||||
|
type=str,
|
||||||
|
default="0.0.0.0",
|
||||||
|
required=False,
|
||||||
|
help="host ip, localhost, 0.0.0.0")
|
||||||
|
parser.add_argument("--port",
|
||||||
|
type=int,
|
||||||
|
default=10095,
|
||||||
|
required=False,
|
||||||
|
help="grpc server port")
|
||||||
|
parser.add_argument("--asr_model",
|
||||||
|
type=str,
|
||||||
|
default="iic/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch",
|
||||||
|
help="model from modelscope")
|
||||||
|
parser.add_argument("--asr_model_revision",
|
||||||
|
type=str,
|
||||||
|
default="v2.0.4",
|
||||||
|
help="")
|
||||||
|
parser.add_argument("--asr_model_online",
|
||||||
|
type=str,
|
||||||
|
default="iic/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online",
|
||||||
|
help="model from modelscope")
|
||||||
|
parser.add_argument("--asr_model_online_revision",
|
||||||
|
type=str,
|
||||||
|
default="v2.0.4",
|
||||||
|
help="")
|
||||||
|
parser.add_argument("--vad_model",
|
||||||
|
type=str,
|
||||||
|
default="iic/speech_fsmn_vad_zh-cn-16k-common-pytorch",
|
||||||
|
help="model from modelscope")
|
||||||
|
parser.add_argument("--vad_model_revision",
|
||||||
|
type=str,
|
||||||
|
default="v2.0.4",
|
||||||
|
help="")
|
||||||
|
parser.add_argument("--punc_model",
|
||||||
|
type=str,
|
||||||
|
default="iic/punc_ct-transformer_zh-cn-common-vad_realtime-vocab272727",
|
||||||
|
help="model from modelscope")
|
||||||
|
parser.add_argument("--punc_model_revision",
|
||||||
|
type=str,
|
||||||
|
default="v2.0.4",
|
||||||
|
help="")
|
||||||
|
parser.add_argument("--ngpu",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="0 for cpu, 1 for gpu")
|
||||||
|
parser.add_argument("--device",
|
||||||
|
type=str,
|
||||||
|
default="cuda",
|
||||||
|
help="cuda, cpu")
|
||||||
|
parser.add_argument("--ncpu",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="cpu cores")
|
||||||
|
parser.add_argument("--certfile",
|
||||||
|
type=str,
|
||||||
|
default="../../ssl_key/server.crt",
|
||||||
|
required=False,
|
||||||
|
help="certfile for ssl")
|
||||||
|
|
||||||
|
parser.add_argument("--keyfile",
|
||||||
|
type=str,
|
||||||
|
default="../../ssl_key/server.key",
|
||||||
|
required=False,
|
||||||
|
help="keyfile for ssl")
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
websocket_users = set()
|
||||||
|
|
||||||
|
print("model loading")
|
||||||
|
from funasr import AutoModel
|
||||||
|
|
||||||
|
# asr
|
||||||
|
model_asr = AutoModel(model=args.asr_model,
|
||||||
|
model_revision=args.asr_model_revision,
|
||||||
|
ngpu=args.ngpu,
|
||||||
|
ncpu=args.ncpu,
|
||||||
|
device=args.device,
|
||||||
|
disable_pbar=True,
|
||||||
|
disable_log=True,
|
||||||
|
)
|
||||||
|
# asr
|
||||||
|
model_asr_streaming = AutoModel(model=args.asr_model_online,
|
||||||
|
model_revision=args.asr_model_online_revision,
|
||||||
|
ngpu=args.ngpu,
|
||||||
|
ncpu=args.ncpu,
|
||||||
|
device=args.device,
|
||||||
|
disable_pbar=True,
|
||||||
|
disable_log=True,
|
||||||
|
)
|
||||||
|
# vad
|
||||||
|
model_vad = AutoModel(model=args.vad_model,
|
||||||
|
model_revision=args.vad_model_revision,
|
||||||
|
ngpu=args.ngpu,
|
||||||
|
ncpu=args.ncpu,
|
||||||
|
device=args.device,
|
||||||
|
disable_pbar=True,
|
||||||
|
disable_log=True,
|
||||||
|
# chunk_size=60,
|
||||||
|
)
|
||||||
|
|
||||||
|
if args.punc_model != "":
|
||||||
|
model_punc = AutoModel(model=args.punc_model,
|
||||||
|
model_revision=args.punc_model_revision,
|
||||||
|
ngpu=args.ngpu,
|
||||||
|
ncpu=args.ncpu,
|
||||||
|
device=args.device,
|
||||||
|
disable_pbar=True,
|
||||||
|
disable_log=True,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
model_punc = None
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
print("model loaded! only support one client at the same time now!!!!")
|
||||||
|
|
||||||
|
async def ws_reset(websocket):
|
||||||
|
print("ws reset now, total num is ",len(websocket_users))
|
||||||
|
|
||||||
|
websocket.status_dict_asr_online["cache"] = {}
|
||||||
|
websocket.status_dict_asr_online["is_final"] = True
|
||||||
|
websocket.status_dict_vad["cache"] = {}
|
||||||
|
websocket.status_dict_vad["is_final"] = True
|
||||||
|
websocket.status_dict_punc["cache"] = {}
|
||||||
|
|
||||||
|
await websocket.close()
|
||||||
|
|
||||||
|
|
||||||
|
async def clear_websocket():
|
||||||
|
for websocket in websocket_users:
|
||||||
|
await ws_reset(websocket)
|
||||||
|
websocket_users.clear()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
async def ws_serve(websocket, path):
|
||||||
|
frames = []
|
||||||
|
frames_asr = []
|
||||||
|
frames_asr_online = []
|
||||||
|
global websocket_users
|
||||||
|
# await clear_websocket()
|
||||||
|
websocket_users.add(websocket)
|
||||||
|
websocket.status_dict_asr = {}
|
||||||
|
websocket.status_dict_asr_online = {"cache": {}, "is_final": False}
|
||||||
|
websocket.status_dict_vad = {'cache': {}, "is_final": False}
|
||||||
|
websocket.status_dict_punc = {'cache': {}}
|
||||||
|
websocket.chunk_interval = 10
|
||||||
|
websocket.vad_pre_idx = 0
|
||||||
|
speech_start = False
|
||||||
|
speech_end_i = -1
|
||||||
|
websocket.wav_name = "microphone"
|
||||||
|
websocket.mode = "2pass"
|
||||||
|
print("new user connected", flush=True)
|
||||||
|
|
||||||
|
try:
|
||||||
|
async for message in websocket:
|
||||||
|
if isinstance(message, str):
|
||||||
|
messagejson = json.loads(message)
|
||||||
|
|
||||||
|
if "is_speaking" in messagejson:
|
||||||
|
websocket.is_speaking = messagejson["is_speaking"]
|
||||||
|
websocket.status_dict_asr_online["is_final"] = not websocket.is_speaking
|
||||||
|
if "chunk_interval" in messagejson:
|
||||||
|
websocket.chunk_interval = messagejson["chunk_interval"]
|
||||||
|
if "wav_name" in messagejson:
|
||||||
|
websocket.wav_name = messagejson.get("wav_name")
|
||||||
|
if "chunk_size" in messagejson:
|
||||||
|
chunk_size = messagejson["chunk_size"]
|
||||||
|
if isinstance(chunk_size, str):
|
||||||
|
chunk_size = chunk_size.split(',')
|
||||||
|
websocket.status_dict_asr_online["chunk_size"] = [int(x) for x in chunk_size]
|
||||||
|
if "encoder_chunk_look_back" in messagejson:
|
||||||
|
websocket.status_dict_asr_online["encoder_chunk_look_back"] = messagejson["encoder_chunk_look_back"]
|
||||||
|
if "decoder_chunk_look_back" in messagejson:
|
||||||
|
websocket.status_dict_asr_online["decoder_chunk_look_back"] = messagejson["decoder_chunk_look_back"]
|
||||||
|
if "hotword" in messagejson:
|
||||||
|
websocket.status_dict_asr["hotword"] = messagejson["hotword"]
|
||||||
|
if "mode" in messagejson:
|
||||||
|
websocket.mode = messagejson["mode"]
|
||||||
|
|
||||||
|
websocket.status_dict_vad["chunk_size"] = int(websocket.status_dict_asr_online["chunk_size"][1]*60/websocket.chunk_interval)
|
||||||
|
if len(frames_asr_online) > 0 or len(frames_asr) > 0 or not isinstance(message, str):
|
||||||
|
if not isinstance(message, str):
|
||||||
|
frames.append(message)
|
||||||
|
duration_ms = len(message)//32
|
||||||
|
websocket.vad_pre_idx += duration_ms
|
||||||
|
|
||||||
|
# asr online
|
||||||
|
frames_asr_online.append(message)
|
||||||
|
websocket.status_dict_asr_online["is_final"] = speech_end_i != -1
|
||||||
|
if len(frames_asr_online) % websocket.chunk_interval == 0 or websocket.status_dict_asr_online["is_final"]:
|
||||||
|
if websocket.mode == "2pass" or websocket.mode == "online":
|
||||||
|
audio_in = b"".join(frames_asr_online)
|
||||||
|
try:
|
||||||
|
await async_asr_online(websocket, audio_in)
|
||||||
|
except:
|
||||||
|
print(f"error in asr streaming, {websocket.status_dict_asr_online}")
|
||||||
|
frames_asr_online = []
|
||||||
|
if speech_start:
|
||||||
|
frames_asr.append(message)
|
||||||
|
# vad online
|
||||||
|
try:
|
||||||
|
speech_start_i, speech_end_i = await async_vad(websocket, message)
|
||||||
|
except:
|
||||||
|
print("error in vad")
|
||||||
|
if speech_start_i != -1:
|
||||||
|
speech_start = True
|
||||||
|
beg_bias = (websocket.vad_pre_idx-speech_start_i)//duration_ms
|
||||||
|
frames_pre = frames[-beg_bias:]
|
||||||
|
frames_asr = []
|
||||||
|
frames_asr.extend(frames_pre)
|
||||||
|
# asr punc offline
|
||||||
|
if speech_end_i != -1 or not websocket.is_speaking:
|
||||||
|
# print("vad end point")
|
||||||
|
if websocket.mode == "2pass" or websocket.mode == "offline":
|
||||||
|
audio_in = b"".join(frames_asr)
|
||||||
|
try:
|
||||||
|
await async_asr(websocket, audio_in)
|
||||||
|
except:
|
||||||
|
print("error in asr offline")
|
||||||
|
frames_asr = []
|
||||||
|
speech_start = False
|
||||||
|
frames_asr_online = []
|
||||||
|
websocket.status_dict_asr_online["cache"] = {}
|
||||||
|
if not websocket.is_speaking:
|
||||||
|
websocket.vad_pre_idx = 0
|
||||||
|
frames = []
|
||||||
|
websocket.status_dict_vad["cache"] = {}
|
||||||
|
else:
|
||||||
|
frames = frames[-20:]
|
||||||
|
|
||||||
|
|
||||||
|
except websockets.ConnectionClosed:
|
||||||
|
print("ConnectionClosed...", websocket_users,flush=True)
|
||||||
|
await ws_reset(websocket)
|
||||||
|
websocket_users.remove(websocket)
|
||||||
|
except websockets.InvalidState:
|
||||||
|
print("InvalidState...")
|
||||||
|
except Exception as e:
|
||||||
|
print("Exception:", e)
|
||||||
|
|
||||||
|
|
||||||
|
async def async_vad(websocket, audio_in):
|
||||||
|
|
||||||
|
segments_result = model_vad.generate(input=audio_in, **websocket.status_dict_vad)[0]["value"]
|
||||||
|
# print(segments_result)
|
||||||
|
|
||||||
|
speech_start = -1
|
||||||
|
speech_end = -1
|
||||||
|
|
||||||
|
if len(segments_result) == 0 or len(segments_result) > 1:
|
||||||
|
return speech_start, speech_end
|
||||||
|
if segments_result[0][0] != -1:
|
||||||
|
speech_start = segments_result[0][0]
|
||||||
|
if segments_result[0][1] != -1:
|
||||||
|
speech_end = segments_result[0][1]
|
||||||
|
return speech_start, speech_end
|
||||||
|
|
||||||
|
|
||||||
|
async def async_asr(websocket, audio_in):
|
||||||
|
if len(audio_in) > 0:
|
||||||
|
# print(len(audio_in))
|
||||||
|
rec_result = model_asr.generate(input=audio_in, **websocket.status_dict_asr)[0]
|
||||||
|
# print("offline_asr, ", rec_result)
|
||||||
|
if model_punc is not None and len(rec_result["text"])>0:
|
||||||
|
# print("offline, before punc", rec_result, "cache", websocket.status_dict_punc)
|
||||||
|
rec_result = model_punc.generate(input=rec_result['text'], **websocket.status_dict_punc)[0]
|
||||||
|
# print("offline, after punc", rec_result)
|
||||||
|
if len(rec_result["text"])>0:
|
||||||
|
# print("offline", rec_result)
|
||||||
|
mode = "2pass-offline" if "2pass" in websocket.mode else websocket.mode
|
||||||
|
message = json.dumps({"mode": mode, "text": rec_result["text"], "wav_name": websocket.wav_name,"is_final":websocket.is_speaking})
|
||||||
|
await websocket.send(message)
|
||||||
|
|
||||||
|
|
||||||
|
async def async_asr_online(websocket, audio_in):
|
||||||
|
if len(audio_in) > 0:
|
||||||
|
# print(websocket.status_dict_asr_online.get("is_final", False))
|
||||||
|
rec_result = model_asr_streaming.generate(input=audio_in, **websocket.status_dict_asr_online)[0]
|
||||||
|
# print("online, ", rec_result)
|
||||||
|
if websocket.mode == "2pass" and websocket.status_dict_asr_online.get("is_final", False):
|
||||||
|
return
|
||||||
|
# websocket.status_dict_asr_online["cache"] = dict()
|
||||||
|
if len(rec_result["text"]):
|
||||||
|
mode = "2pass-online" if "2pass" in websocket.mode else websocket.mode
|
||||||
|
message = json.dumps({"mode": mode, "text": rec_result["text"], "wav_name": websocket.wav_name,"is_final":websocket.is_speaking})
|
||||||
|
await websocket.send(message)
|
||||||
|
|
||||||
|
if len(args.certfile)>0:
|
||||||
|
ssl_context = ssl.SSLContext(ssl.PROTOCOL_TLS_SERVER)
|
||||||
|
|
||||||
|
# Generate with Lets Encrypt, copied to this location, chown to current user and 400 permissions
|
||||||
|
ssl_cert = args.certfile
|
||||||
|
ssl_key = args.keyfile
|
||||||
|
|
||||||
|
ssl_context.load_cert_chain(ssl_cert, keyfile=ssl_key)
|
||||||
|
start_server = websockets.serve(ws_serve, args.host, args.port, subprotocols=["binary"], ping_interval=None,ssl=ssl_context)
|
||||||
|
else:
|
||||||
|
start_server = websockets.serve(ws_serve, args.host, args.port, subprotocols=["binary"], ping_interval=None)
|
||||||
|
asyncio.get_event_loop().run_until_complete(start_server)
|
||||||
|
asyncio.get_event_loop().run_forever()
|
|
@ -4,10 +4,21 @@
|
||||||
python api_v2.py -a 127.0.0.1 -p 9880 -c GPT_SoVITS/configs/tts_infer.yaml
|
python api_v2.py -a 127.0.0.1 -p 9880 -c GPT_SoVITS/configs/tts_infer.yaml
|
||||||
|
|
||||||
|
|
||||||
|
http://127.0.0.1:9880/set_sovits_weights?weights_path=SoVITS_weights/maimai_e55_s1210.pth
|
||||||
|
http://127.0.0.1:9880/set_gpt_weights?weights_path=GPT_weights/maimai-e21.ckpt
|
||||||
|
|
||||||
|
|
||||||
2、接口测试
|
2、接口测试
|
||||||
http://127.0.0.1:9880/tts?text=我是一个粉刷匠,粉刷本领强。我要把那新房子,刷得更漂亮。刷了房顶又刷墙,刷子像飞一样。哎呀我的小鼻子,变呀变了样。&text_lang=zh&ref_audio_path=mengpai.wav&prompt_lang=zh&prompt_text=呜哇好生气啊!不要把我跟一斗相提并论!&text_split_method=cut5&batch_size=1&media_type=wav&streaming_mode=true
|
http://127.0.0.1:9880/set_ava?ava=maimai
|
||||||
|
|
||||||
http://127.0.0.1:9880/tts?text=这是一段测试文本,旨在通过多种语言风格和复杂性的内容来全面检验文本到语音系统的性能。接下来,我们会探索各种主题和语言结构,包括文学引用、技术性描述、日常会话以及诗歌等。首先,让我们从一段简单的描述性文本开始:“在一个阳光明媚的下午,一位年轻的旅者站在山顶上,眺望着下方那宽广而繁忙的城市。他的心中充满了对未来的憧憬和对旅途的期待。”这段文本测试了系统对自然景观描写的处理能力和情感表达的细腻程度。&stream=true
|
http://127.0.0.1:9880/tts_ava?ava=maimai&text=我是一个粉刷匠,粉刷本领强。我要把那新房子,刷得更漂亮。刷了房顶又刷墙,刷子像飞一样。哎呀我的小鼻子,变呀变了样
|
||||||
|
|
||||||
|
http://127.0.0.1:9880/tts_ava?ava=maimai&text=我是一个粉刷匠,粉刷本领强。我要把那新房子,刷得更漂亮。刷了房顶又刷墙,刷子像飞一样。哎呀我的小鼻子,变呀变了样&streaming_mode=true
|
||||||
|
|
||||||
|
http://127.0.0.1:9880/tts_ava?ava=maimai&text=我是一个粉刷匠,粉刷本领强。我要把那新房子,刷得更漂亮。刷了房顶又刷墙,刷子像飞一样。哎呀我的小鼻子,变呀变了样。&text_lang=zh&ref_audio_path=mengpai.wav&prompt_lang=zh&prompt_text=呜哇好生气啊!不要把我跟一斗相提并论!&text_split_method=cut5&batch_size=1&media_type=wav&streaming_mode=true
|
||||||
|
|
||||||
|
3、使用
|
||||||
|
设置角色
|
||||||
|
http://127.0.0.1:9880/set_ava?ava=maimai
|
||||||
|
tts接口
|
||||||
|
http://127.0.0.1:9880/tts_ava?ava=maimai&text=我是一个粉刷匠,粉刷本领强。我要把那新房子,刷得更漂亮。刷了房顶又刷墙,刷子像飞一样。哎呀我的小鼻子,变呀变了样&streaming_mode=true
|
Loading…
Reference in New Issue