add support gpt-sovits

This commit is contained in:
lipku 2024-04-21 17:09:08 +08:00
parent 6d4952c1bf
commit 2e64be4b5d
3 changed files with 78 additions and 43 deletions

44
app.py
View File

@ -75,7 +75,7 @@ def xtts(text, speaker, language, server_url, stream_chunk_size) -> Iterator[byt
return return
first = True first = True
for chunk in res.iter_content(chunk_size=960): for chunk in res.iter_content(chunk_size=960): #24K*20ms*2
if first: if first:
end = time.perf_counter() end = time.perf_counter()
print(f"xtts Time to first chunk: {end-start}s") print(f"xtts Time to first chunk: {end-start}s")
@ -85,12 +85,20 @@ def xtts(text, speaker, language, server_url, stream_chunk_size) -> Iterator[byt
print("xtts response.elapsed:", res.elapsed) print("xtts response.elapsed:", res.elapsed)
def gpt_sovits(text, speaker, language, server_url, stream_chunk_size) -> Iterator[bytes]: def gpt_sovits(text, character, language, server_url, stream_chunk_size) -> Iterator[bytes]:
start = time.perf_counter() start = time.perf_counter()
speaker["text"] = text req={}
speaker["language"] = language req["text"] = text
speaker["stream_chunk_size"] = stream_chunk_size # you can reduce it to get faster response, but degrade quality req["text_language"] = language
res = requests.get(f"{server_url}&text="+text,stream=True) req["character"] = character
#req["emotion"] = emotion
#req["stream_chunk_size"] = stream_chunk_size # you can reduce it to get faster response, but degrade quality
req["stream"] = True
res = requests.post(
f"{server_url}/tts",
json=req,
stream=True,
)
end = time.perf_counter() end = time.perf_counter()
print(f"gpt_sovits Time to make POST: {end-start}s") print(f"gpt_sovits Time to make POST: {end-start}s")
@ -99,7 +107,7 @@ def gpt_sovits(text, speaker, language, server_url, stream_chunk_size) -> Iterat
return return
first = True first = True
for chunk in res.iter_content(chunk_size=960): for chunk in res.iter_content(chunk_size=1280): #32K*20ms*2
if first: if first:
end = time.perf_counter() end = time.perf_counter()
print(f"gpt_sovits Time to first chunk: {end-start}s") print(f"gpt_sovits Time to first chunk: {end-start}s")
@ -109,7 +117,7 @@ def gpt_sovits(text, speaker, language, server_url, stream_chunk_size) -> Iterat
print("gpt_sovits response.elapsed:", res.elapsed) print("gpt_sovits response.elapsed:", res.elapsed)
def stream_xtts(audio_stream,render): def stream_tts(audio_stream,render):
for chunk in audio_stream: for chunk in audio_stream:
if chunk is not None: if chunk is not None:
render.push_audio(chunk) render.push_audio(chunk)
@ -121,19 +129,19 @@ def txt_to_audio(text_):
t = time.time() t = time.time()
asyncio.get_event_loop().run_until_complete(main(voicename,text,nerfreal)) asyncio.get_event_loop().run_until_complete(main(voicename,text,nerfreal))
print(f'-------edge tts time:{time.time()-t:.4f}s') print(f'-------edge tts time:{time.time()-t:.4f}s')
elif tts_type == "gpt": #gpt_sovits elif tts_type == "gpt-sovits": #gpt_sovits
stream_xtts( stream_tts(
gpt_sovits( gpt_sovits(
text_, text_,
gspeaker, "test", #character
"zh-cn", #en args.language, "zh", #en args.language,
"http://127.0.0.1:9880/tts_ava?ava=maimai&streaming_mode=true", #args.server_url, "http://127.0.0.1:5000", #args.server_url,
"20" #args.stream_chunk_size "20" #args.stream_chunk_size
), ),
nerfreal nerfreal
) )
else: #xtts else: #xtts
stream_xtts( stream_tts(
xtts( xtts(
text_, text_,
gspeaker, gspeaker,
@ -354,18 +362,18 @@ if __name__ == '__main__':
parser.add_argument('--fullbody_offset_x', type=int, default=0) parser.add_argument('--fullbody_offset_x', type=int, default=0)
parser.add_argument('--fullbody_offset_y', type=int, default=0) parser.add_argument('--fullbody_offset_y', type=int, default=0)
parser.add_argument('--tts', type=str, default='edgetts') #xtts parser.add_argument('--tts', type=str, default='edgetts') #xtts gpt-sovits
parser.add_argument('--ref_file', type=str, default=None) parser.add_argument('--ref_file', type=str, default=None)
parser.add_argument('--xtts_server', type=str, default='http://localhost:9000') parser.add_argument('--tts_server', type=str, default='http://localhost:9000')
opt = parser.parse_args() opt = parser.parse_args()
app.config.from_object(opt) app.config.from_object(opt)
#print(app.config['xtts_server']) #print(app.config['tts_server'])
tts_type = opt.tts tts_type = opt.tts
if tts_type == "xtts": if tts_type == "xtts":
print("Computing the latents for a new reference...") print("Computing the latents for a new reference...")
gspeaker = get_speaker(opt.ref_file, opt.xtts_server) gspeaker = get_speaker(opt.ref_file, opt.tts_server)
# assert test mode # assert test mode
opt.test = True opt.test = True

View File

@ -314,10 +314,13 @@ class ASR:
def push_audio(self,buffer): #push audio pcm from tts def push_audio(self,buffer): #push audio pcm from tts
print(f'[INFO] push_audio {len(buffer)}') print(f'[INFO] push_audio {len(buffer)}')
if self.opt.tts == "xtts": if self.opt.tts == "xtts" or self.opt.tts == "gpt-sovits":
if len(buffer)>0: if len(buffer)>0:
stream = np.frombuffer(buffer, dtype=np.int16).astype(np.float32) / 32767 stream = np.frombuffer(buffer, dtype=np.int16).astype(np.float32) / 32767
if self.opt.tts == "xtts":
stream = resampy.resample(x=stream, sr_orig=24000, sr_new=self.sample_rate) stream = resampy.resample(x=stream, sr_orig=24000, sr_new=self.sample_rate)
else:
stream = resampy.resample(x=stream, sr_orig=32000, sr_new=self.sample_rate)
#byte_stream=BytesIO(buffer) #byte_stream=BytesIO(buffer)
#stream = self.__create_bytes_stream(byte_stream) #stream = self.__create_bytes_stream(byte_stream)
streamlen = stream.shape[0] streamlen = stream.shape[0]

View File

@ -1,27 +1,51 @@
一、采用gpt-sovits方案bert-sovits适合长音频训练gpt-sovits运行短音频快速推理 # 采用gpt-sovits方案bert-sovits适合长音频训练gpt-sovits运行短音频快速推理
下载tts服务端代码 ## 部署tts推理
https://github.com/yanyuxiyangzk/GPT-SoVITS/tree/fast_inference_ git clone https://github.com/X-T-E-R/GPT-SoVITS-Inference.git
api_v2.py即启动的服务端代码也可以打开声音克隆界面进行训练可以训练带感情语气等
1、启动 1. 安装依赖库
python api_v2.py -a 127.0.0.1 -p 9880 -c GPT_SoVITS/configs/tts_infer.yaml ```
conda create -n GPTSoVits python=3.9
conda activate GPTSoVits
bash install.sh
```
从 [GPT-SoVITS Models](https://huggingface.co/lj1995/GPT-SoVITS) 下载预训练模型,并将它们放置在 `GPT_SoVITS\pretrained_models`
2. Model Folder Format
模型文件下载地址 https://www.yuque.com/xter/zibxlp/gsximn7ditzgispg
下载的模型文件放到trained目录下, 如 `trained/Character1/`
Put the pth / ckpt / wav files in it, the wav should be named as the prompt text
Like :
```
trained
--hutao
----hutao-e75.ckpt
----hutao_e60_s3360.pth
----hutao said something.wav
```
3. 启动
后端接口: python Inference/src/tts_backend.py
如果有错误提示找不到cmudict从这下载https://github.com/nltk/nltk_data将packages改名为nltk_data放到home目录下
管理页面: python Inference/src/TTS_Webui.py, 浏览器打开可以管理character和emotion
http://127.0.0.1:9880/set_sovits_weights?weights_path=SoVITS_weights/maimai_e55_s1210.pth 4. 接口测试
http://127.0.0.1:9880/set_gpt_weights?weights_path=GPT_weights/maimai-e21.ckpt Character and Emotion List
To obtain the supported characters and their corresponding emotions, please visit the following URL:
- URL: `http://127.0.0.1:5000/character_list`
- Returns: A JSON format list of characters and corresponding emotions
- Method: `GET`
```
2、接口测试 {
http://127.0.0.1:9880/set_ava?ava=maimai "Hanabi": [
"default",
http://127.0.0.1:9880/tts_ava?ava=maimai&text=我是一个粉刷匠,粉刷本领强。我要把那新房子,刷得更漂亮。刷了房顶又刷墙,刷子像飞一样。哎呀我的小鼻子,变呀变了样 "Normal",
"Yandere",
http://127.0.0.1:9880/tts_ava?ava=maimai&text=我是一个粉刷匠,粉刷本领强。我要把那新房子,刷得更漂亮。刷了房顶又刷墙,刷子像飞一样。哎呀我的小鼻子,变呀变了样&streaming_mode=true ],
"Hutao": [
http://127.0.0.1:9880/tts_ava?ava=maimai&text=我是一个粉刷匠,粉刷本领强。我要把那新房子,刷得更漂亮。刷了房顶又刷墙,刷子像飞一样。哎呀我的小鼻子,变呀变了样。&text_lang=zh&ref_audio_path=mengpai.wav&prompt_lang=zh&prompt_text=呜哇好生气啊!不要把我跟一斗相提并论!&text_split_method=cut5&batch_size=1&media_type=wav&streaming_mode=true "default"
]
3、使用 }
设置角色 ```
http://127.0.0.1:9880/set_ava?ava=maimai
tts接口
http://127.0.0.1:9880/tts_ava?ava=maimai&text=我是一个粉刷匠,粉刷本领强。我要把那新房子,刷得更漂亮。刷了房顶又刷墙,刷子像飞一样。哎呀我的小鼻子,变呀变了样&streaming_mode=true