Merge branch 'lipku:main' into main

This commit is contained in:
yanyuxiyangzk 2024-04-05 18:59:40 +08:00 committed by GitHub
commit 313d57dfa4
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 328 additions and 219 deletions

View File

@ -3,6 +3,12 @@ A streaming digital human based on the Ernerf model realize audio video synch
[![Watch the video]](/assets/demo.mp4)
## Features
1. 支持声音克隆
2. 支持大模型对话
3. 支持多种音频特征驱动wav2vec、hubert
4. 支持全身视频拼接
## 1. Installation
Tested on Ubuntu 20.04, Python3.10, Pytorch 1.12 and CUDA 11.3
@ -53,7 +59,7 @@ nginx
用浏览器打开http://serverip/echo.html, 在文本框输入任意文字,提交。数字人播报该段文字
## 3. 更多使用
## 3. More Usage
### 3.1 使用LLM模型进行数字人对话
目前借鉴数字人对话系统[LinlyTalker](https://github.com/Kedreamix/Linly-Talker)的方式LLM模型支持Chatgpt,Qwen和GeminiPro。需要在app.py中填入自己的api_key。
@ -98,6 +104,7 @@ python app.py --fullbody --fullbody_img data/fullbody/img --fullbody_offset_x 10
```
- --fullbody_width、--fullbody_height 全身视频的宽、高
- --W、--H 训练视频的宽、高
- ernerf训练第三步torso如果训练的不好在拼接处会有接缝。可以在上面的命令加上--torso_imgs data/xxx/torso_imgstorso不用模型推理直接用训练数据集里的torso图片。这种方式可能头颈处会有些人工痕迹。
## 4. Docker Run
不需要第1步的安装直接运行。
@ -126,9 +133,9 @@ srs和nginx的运行同2.1和2.3
在Tesla T4显卡上测试整体fps为18左右如果去掉音视频编码推流帧率在20左右。用4090显卡可以达到40多帧/秒。
优化:新开一个线程运行音视频编码推流
2. 延时
整体延时5s多
1tts延时2s左右目前用的edgetts需要将每句话转完后一次性输入可以优化tts改成流式输入
2wav2vec延时1s多需要缓存50帧音频做计算可以通过-m设置context_size来减少延时
整体延时3s左右
1tts延时1.7s左右目前用的edgetts需要将每句话转完后一次性输入可以优化tts改成流式输入
2wav2vec延时0.4s需要缓存18帧音频做计算
3srs转发延时设置srs服务器减少缓冲延时。具体配置可看 https://ossrs.net/lts/zh-cn/docs/v5/doc/low-latency, 配置了一个低延时版本
```python
docker run --rm -it -p 1935:1935 -p 1985:1985 -p 8080:8080 registry.cn-hangzhou.aliyuncs.com/lipku/srs:v1.1

11
app.py
View File

@ -37,7 +37,11 @@ async def main(voicename: str, text: str, render):
communicate = edge_tts.Communicate(text, voicename)
#with open(OUTPUT_FILE, "wb") as file:
first = True
async for chunk in communicate.stream():
if first:
#render.before_push_audio()
first = False
if chunk["type"] == "audio":
render.push_audio(chunk["data"])
#file.write(chunk["data"])
@ -160,6 +164,7 @@ if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--pose', type=str, default="data/data_kf.json", help="transforms.json, pose source")
parser.add_argument('--au', type=str, default="data/au.csv", help="eye blink area")
parser.add_argument('--torso_imgs', type=str, default="", help="torso images path")
parser.add_argument('-O', action='store_true', help="equals --fp16 --cuda_ray --exp_eye")
@ -259,7 +264,7 @@ if __name__ == '__main__':
parser.add_argument('--fps', type=int, default=50)
# sliding window left-middle-right length (unit: 20ms)
parser.add_argument('-l', type=int, default=10)
parser.add_argument('-m', type=int, default=50)
parser.add_argument('-m', type=int, default=8)
parser.add_argument('-r', type=int, default=10)
parser.add_argument('--fullbody', action='store_true', help="fullbody human")
@ -298,7 +303,8 @@ if __name__ == '__main__':
opt.exp_eye = True
opt.smooth_eye = True
opt.torso = True
if opt.torso_imgs=='': #no img,use model output
opt.torso = True
# assert opt.cuda_ray, "Only support CUDA ray mode."
opt.asr = True
@ -307,6 +313,7 @@ if __name__ == '__main__':
# assert opt.patch_size > 16, "patch_size should > 16 to run LPIPS loss."
assert opt.num_rays % (opt.patch_size ** 2) == 0, "patch_size ** 2 should be dividable by num_rays."
seed_everything(opt.seed)
print(opt)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = NeRFNetwork(opt)

View File

@ -122,58 +122,34 @@ class ASR:
self.att_feats = [torch.zeros(self.audio_dim, 16, dtype=torch.float32, device=self.device)] * 4 # 4 zero padding...
# warm up steps needed: mid + right + window_size + attention_size
self.warm_up_steps = self.context_size + self.stride_right_size + self.stride_left_size #+ 8 + 2 * 3
self.warm_up_steps = self.context_size + self.stride_right_size #+ self.stride_left_size #+ 8 + 2 * 3
self.listening = False
self.playing = False
def listen(self):
# start
if self.mode == 'live' and not self.listening:
print(f'[INFO] starting read frame thread...')
self.process_read_frame.start()
self.listening = True
if self.play and not self.playing:
print(f'[INFO] starting play frame thread...')
self.process_play_frame.start()
self.playing = True
def stop(self):
self.exit_event.set()
if self.play:
self.output_stream.stop_stream()
self.output_stream.close()
if self.playing:
self.process_play_frame.join()
self.playing = False
if self.mode == 'live':
#self.input_stream.stop_stream() todo
self.input_stream.close()
if self.listening:
self.process_read_frame.join()
self.listening = False
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
self.stop()
if self.mode == 'live':
# live mode: also print the result text.
self.text += '\n[END]'
print(self.text)
def get_next_feat(self):
def get_next_feat(self): #get audio embedding to nerf
# return a [1/8, 16] window, for the next input to nerf side.
if self.opt.att>0:
while len(self.att_feats) < 8:
# [------f+++t-----]
if self.front < self.tail:
feat = self.feat_queue[self.front:self.tail]
# [++t-----------f+]
else:
feat = torch.cat([self.feat_queue[self.front:], self.feat_queue[:self.tail]], dim=0)
while len(self.att_feats) < 8:
self.front = (self.front + 2) % self.feat_queue.shape[0]
self.tail = (self.tail + 2) % self.feat_queue.shape[0]
# print(self.front, self.tail, feat.shape)
self.att_feats.append(feat.permute(1, 0))
att_feat = torch.stack(self.att_feats, dim=0) # [8, 44, 16]
# discard old
self.att_feats = self.att_feats[1:]
else:
# [------f+++t-----]
if self.front < self.tail:
feat = self.feat_queue[self.front:self.tail]
@ -184,14 +160,8 @@ class ASR:
self.front = (self.front + 2) % self.feat_queue.shape[0]
self.tail = (self.tail + 2) % self.feat_queue.shape[0]
# print(self.front, self.tail, feat.shape)
att_feat = feat.permute(1, 0).unsqueeze(0)
self.att_feats.append(feat.permute(1, 0))
att_feat = torch.stack(self.att_feats, dim=0) # [8, 44, 16]
# discard old
self.att_feats = self.att_feats[1:]
return att_feat
@ -201,7 +171,7 @@ class ASR:
return
# get a frame of audio
frame = self.get_audio_frame()
frame = self.__get_audio_frame()
# the last frame
if frame is None:
@ -223,7 +193,7 @@ class ASR:
print(f'[INFO] frame_to_text... ')
#t = time.time()
logits, labels, text = self.frame_to_text(inputs)
logits, labels, text = self.__frame_to_text(inputs)
#print(f'-------wav2vec time:{time.time()-t:.4f}s')
feats = logits # better lips-sync than labels
@ -264,6 +234,166 @@ class ASR:
np.save(output_path, unfold_feats.cpu().numpy())
print(f"[INFO] saved logits to {output_path}")
def __get_audio_frame(self):
if self.inwarm: # warm up
return np.zeros(self.chunk, dtype=np.float32)
if self.mode == 'file':
if self.idx < self.file_stream.shape[0]:
frame = self.file_stream[self.idx: self.idx + self.chunk]
self.idx = self.idx + self.chunk
return frame
else:
return None
else:
try:
frame = self.queue.get(block=False)
print(f'[INFO] get frame {frame.shape}')
except queue.Empty:
frame = np.zeros(self.chunk, dtype=np.float32)
self.idx = self.idx + self.chunk
return frame
def __frame_to_text(self, frame):
# frame: [N * 320], N = (context_size + 2 * stride_size)
inputs = self.processor(frame, sampling_rate=self.sample_rate, return_tensors="pt", padding=True)
with torch.no_grad():
result = self.model(inputs.input_values.to(self.device))
if 'hubert' in self.opt.asr_model:
logits = result.last_hidden_state # [B=1, T=pts//320, hid=1024]
else:
logits = result.logits # [1, N - 1, 32]
#print('logits.shape:',logits.shape)
# cut off stride
left = max(0, self.stride_left_size)
right = min(logits.shape[1], logits.shape[1] - self.stride_right_size + 1) # +1 to make sure output is the same length as input.
# do not cut right if terminated.
if self.terminated:
right = logits.shape[1]
logits = logits[:, left:right]
# print(frame.shape, inputs.input_values.shape, logits.shape)
#predicted_ids = torch.argmax(logits, dim=-1)
#transcription = self.processor.batch_decode(predicted_ids)[0].lower()
# for esperanto
# labels = np.array(['ŭ', '»', 'c', 'ĵ', 'ñ', '”', '„', '“', 'ǔ', 'o', 'ĝ', 'm', 'k', 'd', 'a', 'ŝ', 'z', 'i', '«', '—', '', 'ĥ', 'f', 'y', 'h', 'j', '|', 'r', 'u', 'ĉ', 's', '', 'fi', 'l', 'p', '', 'g', 'v', 't', 'b', 'n', 'e', '[UNK]', '[PAD]'])
# labels = np.array([' ', ' ', ' ', '-', '|', 'E', 'T', 'A', 'O', 'N', 'I', 'H', 'S', 'R', 'D', 'L', 'U', 'M', 'W', 'C', 'F', 'G', 'Y', 'P', 'B', 'V', 'K', "'", 'X', 'J', 'Q', 'Z'])
# print(''.join(labels[predicted_ids[0].detach().cpu().long().numpy()]))
# print(predicted_ids[0])
# print(transcription)
return logits[0], None,None #predicted_ids[0], transcription # [N,]
def __create_bytes_stream(self,byte_stream):
#byte_stream=BytesIO(buffer)
stream, sample_rate = sf.read(byte_stream) # [T*sample_rate,] float64
print(f'[INFO]tts audio stream {sample_rate}: {stream.shape}')
stream = stream.astype(np.float32)
if stream.ndim > 1:
print(f'[WARN] audio has {stream.shape[1]} channels, only use the first.')
stream = stream[:, 0]
if sample_rate != self.sample_rate and stream.shape[0]>0:
print(f'[WARN] audio sample rate is {sample_rate}, resampling into {self.sample_rate}.')
stream = resampy.resample(x=stream, sr_orig=sample_rate, sr_new=self.sample_rate)
return stream
def push_audio(self,buffer): #push audio pcm from tts
print(f'[INFO] push_audio {len(buffer)}')
if self.opt.tts == "xtts":
if len(buffer)>0:
stream = np.frombuffer(buffer, dtype=np.int16).astype(np.float32) / 32767
stream = resampy.resample(x=stream, sr_orig=24000, sr_new=self.sample_rate)
#byte_stream=BytesIO(buffer)
#stream = self.__create_bytes_stream(byte_stream)
streamlen = stream.shape[0]
idx=0
while streamlen >= self.chunk:
self.queue.put(stream[idx:idx+self.chunk])
streamlen -= self.chunk
idx += self.chunk
# if streamlen>0: #skip last frame(not 20ms)
# self.queue.put(stream[idx:])
else: #edge tts
self.input_stream.write(buffer)
if len(buffer)<=0:
self.input_stream.seek(0)
stream = self.__create_bytes_stream(self.input_stream)
streamlen = stream.shape[0]
idx=0
while streamlen >= self.chunk:
self.queue.put(stream[idx:idx+self.chunk])
streamlen -= self.chunk
idx += self.chunk
#if streamlen>0: #skip last frame(not 20ms)
# self.queue.put(stream[idx:])
self.input_stream.seek(0)
self.input_stream.truncate()
def get_audio_out(self): #get origin audio pcm to nerf
return self.output_queue.get()
def __init_queue(self):
self.frames = []
self.queue.queue.clear()
self.output_queue.queue.clear()
self.front = self.feat_buffer_size * self.context_size - 8 # fake padding
self.tail = 8
# attention window...
self.att_feats = [torch.zeros(self.audio_dim, 16, dtype=torch.float32, device=self.device)] * 4
def before_push_audio(self):
self.__init_queue()
self.warm_up()
def run(self):
self.listen()
while not self.terminated:
self.run_step()
def clear_queue(self):
# clear the queue, to reduce potential latency...
print(f'[INFO] clear queue')
if self.mode == 'live':
self.queue.queue.clear()
if self.play:
self.output_queue.queue.clear()
def warm_up(self):
#self.listen()
self.inwarm = True
print(f'[INFO] warm up ASR live model, expected latency = {self.warm_up_steps / self.fps:.6f}s')
t = time.time()
for _ in range(self.stride_left_size):
self.frames.append(np.zeros(self.chunk, dtype=np.float32))
for _ in range(self.warm_up_steps):
self.run_step()
#if torch.cuda.is_available():
# torch.cuda.synchronize()
t = time.time() - t
print(f'[INFO] warm-up done, actual latency = {t:.6f}s')
self.inwarm = False
#self.clear_queue()
'''
def create_file_stream(self):
@ -311,157 +441,50 @@ class ASR:
return audio, stream
'''
#####not used function#####################################
def listen(self):
# start
if self.mode == 'live' and not self.listening:
print(f'[INFO] starting read frame thread...')
self.process_read_frame.start()
self.listening = True
def get_audio_frame(self):
if self.play and not self.playing:
print(f'[INFO] starting play frame thread...')
self.process_play_frame.start()
self.playing = True
if self.inwarm: # warm up
return np.zeros(self.chunk, dtype=np.float32)
def stop(self):
if self.mode == 'file':
self.exit_event.set()
if self.idx < self.file_stream.shape[0]:
frame = self.file_stream[self.idx: self.idx + self.chunk]
self.idx = self.idx + self.chunk
return frame
else:
return None
else:
try:
frame = self.queue.get(block=False)
print(f'[INFO] get frame {frame.shape}')
except queue.Empty:
frame = np.zeros(self.chunk, dtype=np.float32)
self.idx = self.idx + self.chunk
return frame
def frame_to_text(self, frame):
# frame: [N * 320], N = (context_size + 2 * stride_size)
inputs = self.processor(frame, sampling_rate=self.sample_rate, return_tensors="pt", padding=True)
with torch.no_grad():
result = self.model(inputs.input_values.to(self.device))
if 'hubert' in self.opt.asr_model:
logits = result.last_hidden_state # [B=1, T=pts//320, hid=1024]
else:
logits = result.logits # [1, N - 1, 32]
#print('logits.shape:',logits.shape)
# cut off stride
left = max(0, self.stride_left_size)
right = min(logits.shape[1], logits.shape[1] - self.stride_right_size + 1) # +1 to make sure output is the same length as input.
# do not cut right if terminated.
if self.terminated:
right = logits.shape[1]
logits = logits[:, left:right]
# print(frame.shape, inputs.input_values.shape, logits.shape)
#predicted_ids = torch.argmax(logits, dim=-1)
#transcription = self.processor.batch_decode(predicted_ids)[0].lower()
# for esperanto
# labels = np.array(['ŭ', '»', 'c', 'ĵ', 'ñ', '”', '„', '“', 'ǔ', 'o', 'ĝ', 'm', 'k', 'd', 'a', 'ŝ', 'z', 'i', '«', '—', '', 'ĥ', 'f', 'y', 'h', 'j', '|', 'r', 'u', 'ĉ', 's', '', 'fi', 'l', 'p', '', 'g', 'v', 't', 'b', 'n', 'e', '[UNK]', '[PAD]'])
# labels = np.array([' ', ' ', ' ', '-', '|', 'E', 'T', 'A', 'O', 'N', 'I', 'H', 'S', 'R', 'D', 'L', 'U', 'M', 'W', 'C', 'F', 'G', 'Y', 'P', 'B', 'V', 'K', "'", 'X', 'J', 'Q', 'Z'])
# print(''.join(labels[predicted_ids[0].detach().cpu().long().numpy()]))
# print(predicted_ids[0])
# print(transcription)
return logits[0], None,None #predicted_ids[0], transcription # [N,]
def create_bytes_stream(self,byte_stream):
#byte_stream=BytesIO(buffer)
stream, sample_rate = sf.read(byte_stream) # [T*sample_rate,] float64
print(f'[INFO]tts audio stream {sample_rate}: {stream.shape}')
stream = stream.astype(np.float32)
if stream.ndim > 1:
print(f'[WARN] audio has {stream.shape[1]} channels, only use the first.')
stream = stream[:, 0]
if sample_rate != self.sample_rate and stream.shape[0]>0:
print(f'[WARN] audio sample rate is {sample_rate}, resampling into {self.sample_rate}.')
stream = resampy.resample(x=stream, sr_orig=sample_rate, sr_new=self.sample_rate)
return stream
def push_audio(self,buffer):
print(f'[INFO] push_audio {len(buffer)}')
if self.opt.tts == "xtts":
if len(buffer)>0:
stream = np.frombuffer(buffer, dtype=np.int16).astype(np.float32) / 32767
stream = resampy.resample(x=stream, sr_orig=24000, sr_new=self.sample_rate)
#byte_stream=BytesIO(buffer)
#stream = self.create_bytes_stream(byte_stream)
streamlen = stream.shape[0]
idx=0
while streamlen >= self.chunk:
self.queue.put(stream[idx:idx+self.chunk])
streamlen -= self.chunk
idx += self.chunk
# if streamlen>0: #skip last frame(not 20ms)
# self.queue.put(stream[idx:])
else: #edge tts
self.input_stream.write(buffer)
if len(buffer)<=0:
self.input_stream.seek(0)
stream = self.create_bytes_stream(self.input_stream)
streamlen = stream.shape[0]
idx=0
while streamlen >= self.chunk:
self.queue.put(stream[idx:idx+self.chunk])
streamlen -= self.chunk
idx += self.chunk
#if streamlen>0: #skip last frame(not 20ms)
# self.queue.put(stream[idx:])
self.input_stream.seek(0)
self.input_stream.truncate()
def get_audio_out(self):
return self.output_queue.get()
def run(self):
self.listen()
while not self.terminated:
self.run_step()
def clear_queue(self):
# clear the queue, to reduce potential latency...
print(f'[INFO] clear queue')
if self.mode == 'live':
self.queue.queue.clear()
if self.play:
self.output_queue.queue.clear()
self.output_stream.stop_stream()
self.output_stream.close()
if self.playing:
self.process_play_frame.join()
self.playing = False
def warm_up(self):
#self.listen()
self.inwarm = True
print(f'[INFO] warm up ASR live model, expected latency = {self.warm_up_steps / self.fps:.6f}s')
t = time.time()
for _ in range(self.warm_up_steps):
self.run_step()
if torch.cuda.is_available():
torch.cuda.synchronize()
t = time.time() - t
print(f'[INFO] warm-up done, actual latency = {t:.6f}s')
self.inwarm = False
#self.clear_queue()
if self.mode == 'live':
#self.input_stream.stop_stream() todo
self.input_stream.close()
if self.listening:
self.process_read_frame.join()
self.listening = False
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
self.stop()
if self.mode == 'live':
# live mode: also print the result text.
self.text += '\n[END]'
print(self.text)
#########################################################
if __name__ == '__main__':
import argparse

View File

@ -1,7 +1,7 @@
import torch
import argparse
from nerf_triplane.provider import NeRFDataset
from nerf_triplane.provider import NeRFDataset,NeRFDataset_Test
from nerf_triplane.utils import *
from nerf_triplane.network import NeRFNetwork
@ -24,6 +24,9 @@ if __name__ == '__main__':
parser.add_argument('--workspace', type=str, default='workspace')
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--pose', type=str, default="data/data_kf.json", help="transforms.json, pose source")
parser.add_argument('--au', type=str, default="data/au.csv", help="eye blink area")
### training options
parser.add_argument('--iters', type=int, default=200000, help="training iters")
parser.add_argument('--lr', type=float, default=1e-2, help="initial learning rate")
@ -47,7 +50,7 @@ if __name__ == '__main__':
### network backbone options
parser.add_argument('--fp16', action='store_true', help="use amp mixed precision training")
parser.add_argument('--bg_img', type=str, default='', help="background image")
parser.add_argument('--bg_img', type=str, default='white', help="background image")
parser.add_argument('--fbg', action='store_true', help="frame-wise bg")
parser.add_argument('--exp_eye', action='store_true', help="explicitly control the eyes")
parser.add_argument('--fix_eye', type=float, default=-1, help="fixed eye area, negative to disable, set to 0-0.3 for a reasonable eye")

View File

@ -98,6 +98,7 @@ class NeRFDataset_Test:
self.training = False
self.num_rays = -1
self.preload = opt.preload # 0 = disk, 1 = cpu, 2 = gpu
# load nerf-compatible format data.
@ -148,6 +149,7 @@ class NeRFDataset_Test:
self.poses = []
self.auds = []
self.eye_area = []
self.torso_img = []
for f in tqdm.tqdm(frames, desc=f'Loading data'):
@ -173,6 +175,29 @@ class NeRFDataset_Test:
self.eye_area.append(area)
# load frame-wise bg
if self.opt.torso_imgs!='':
torso_img_path = os.path.join(self.opt.torso_imgs, str(f['img_id']) + '.png')
if self.preload > 0:
torso_img = cv2.imread(torso_img_path, cv2.IMREAD_UNCHANGED) # [H, W, 4]
torso_img = cv2.cvtColor(torso_img, cv2.COLOR_BGRA2RGBA)
torso_img = torso_img.astype(np.float32) / 255 # [H, W, 3/4]
self.torso_img.append(torso_img)
else:
self.torso_img.append(torso_img_path)
if self.opt.torso_imgs!='':
if self.preload > 0:
self.torso_img = torch.from_numpy(np.stack(self.torso_img, axis=0)) # [N, H, W, C]
else:
self.torso_img = np.array(self.torso_img)
if self.preload > 1: #gpu
self.torso_img = self.torso_img.to(torch.half).to(self.device)
# load pre-extracted background image (should be the same size as training image...)
if self.opt.bg_img == 'white': # special
@ -209,6 +234,9 @@ class NeRFDataset_Test:
self.bg_img = torch.from_numpy(self.bg_img)
if self.preload > 1 or self.opt.torso_imgs=='': #gpu
self.bg_img = self.bg_img.to(torch.half).to(self.device)
if self.opt.exp_eye:
self.eye_area = np.array(self.eye_area, dtype=np.float32) # [N]
print(f'[INFO] eye_area: {self.eye_area.min()} - {self.eye_area.max()}')
@ -230,8 +258,6 @@ class NeRFDataset_Test:
if self.auds is not None:
self.auds = self.auds.to(self.device)
self.bg_img = self.bg_img.to(torch.half).to(self.device)
if self.opt.exp_eye:
self.eye_area = self.eye_area.to(self.device)
@ -286,7 +312,22 @@ class NeRFDataset_Test:
else:
results['eye'] = None
bg_img = self.bg_img.view(1, -1, 3).repeat(B, 1, 1).to(self.device)
# load bg
if self.opt.torso_imgs!='':
bg_torso_img = self.torso_img[index]
if self.preload == 0: # on the fly loading
bg_torso_img = cv2.imread(bg_torso_img[0], cv2.IMREAD_UNCHANGED) # [H, W, 4]
bg_torso_img = cv2.cvtColor(bg_torso_img, cv2.COLOR_BGRA2RGBA)
bg_torso_img = bg_torso_img.astype(np.float32) / 255 # [H, W, 3/4]
bg_torso_img = torch.from_numpy(bg_torso_img).unsqueeze(0)
bg_torso_img = bg_torso_img[..., :3] * bg_torso_img[..., 3:] + self.bg_img * (1 - bg_torso_img[..., 3:])
bg_torso_img = bg_torso_img.view(B, -1, 3).to(self.device)
if not self.opt.torso:
bg_img = bg_torso_img
else:
bg_img = self.bg_img.view(1, -1, 3).repeat(B, 1, 1).to(self.device)
else:
bg_img = self.bg_img.view(1, -1, 3).repeat(B, 1, 1).to(self.device)
results['bg_color'] = bg_img
@ -341,8 +382,30 @@ class NeRFDataset:
# load nerf-compatible format data.
with open(opt.pose, 'r') as f:
transform = json.load(f)
# load all splits (train/valid/test)
if type == 'all':
transform_paths = glob.glob(os.path.join(self.root_path, '*.json'))
transform = None
for transform_path in transform_paths:
with open(transform_path, 'r') as f:
tmp_transform = json.load(f)
if transform is None:
transform = tmp_transform
else:
transform['frames'].extend(tmp_transform['frames'])
# load train and val split
elif type == 'trainval':
with open(os.path.join(self.root_path, f'transforms_train.json'), 'r') as f:
transform = json.load(f)
with open(os.path.join(self.root_path, f'transforms_val.json'), 'r') as f:
transform_val = json.load(f)
transform['frames'].extend(transform_val['frames'])
# only load one specified split
else:
# no test, use val as test
_split = 'val' if type == 'test' else type
with open(os.path.join(self.root_path, f'transforms_{_split}.json'), 'r') as f:
transform = json.load(f)
# load image size
if 'h' in transform and 'w' in transform:
@ -371,6 +434,10 @@ class NeRFDataset:
aud_features = np.load(os.path.join(self.root_path, 'aud_eo.npy'))
elif 'deepspeech' in self.opt.asr_model:
aud_features = np.load(os.path.join(self.root_path, 'aud_ds.npy'))
# elif 'hubert_cn' in self.opt.asr_model:
# aud_features = np.load(os.path.join(self.root_path, 'aud_hu_cn.npy'))
elif 'hubert' in self.opt.asr_model:
aud_features = np.load(os.path.join(self.root_path, 'aud_hu.npy'))
else:
aud_features = np.load(os.path.join(self.root_path, 'aud.npy'))
# cross-driven extracted features.

View File

@ -34,9 +34,8 @@ class NeRFReal:
self.audio_features = data_loader._data.auds # [N, 29, 16]
self.audio_idx = 0
self.frame_total_num = data_loader._data.end_index
print("frame_total_num:",self.frame_total_num)
self.frame_index=0
#self.frame_total_num = data_loader._data.end_index
#print("frame_total_num:",self.frame_total_num)
# control eye
self.eye_area = None if not self.opt.exp_eye else data_loader._data.eye_area.mean().item()
@ -110,6 +109,9 @@ class NeRFReal:
def push_audio(self,chunk):
self.asr.push_audio(chunk)
def before_push_audio(self):
self.asr.before_push_audio()
def prepare_buffer(self, outputs):
if self.mode == 'image':
return outputs['image']
@ -140,7 +142,8 @@ class NeRFReal:
if not self.opt.fullbody:
self.streamer.stream_frame(image)
else: #fullbody human
image_fullbody = cv2.imread(os.path.join(self.opt.fullbody_img, str(self.frame_index%self.frame_total_num)+'.jpg'))
#print("frame index:",data['index'])
image_fullbody = cv2.imread(os.path.join(self.opt.fullbody_img, str(data['index'][0])+'.jpg'))
image_fullbody = cv2.cvtColor(image_fullbody, cv2.COLOR_BGR2RGB)
start_x = self.opt.fullbody_offset_x # 合并后小图片的起始x坐标
start_y = self.opt.fullbody_offset_y # 合并后小图片的起始y坐标
@ -201,7 +204,6 @@ class NeRFReal:
for _ in range(2):
self.asr.run_step()
self.test_step()
self.frame_index = (self.frame_index+1)%self.frame_total_num
totaltime += (time.time() - t)
count += 1
if count==100: