add qwen openapi

This commit is contained in:
waani 2024-04-19 10:15:55 +08:00
parent 54fcbb8cc7
commit 3674875095
2 changed files with 37 additions and 6 deletions

View File

@ -26,7 +26,7 @@ class LLM:
elif model_name == 'ChatGPT': elif model_name == 'ChatGPT':
llm = ChatGPT(model_path, api_key=api_key) llm = ChatGPT(model_path, api_key=api_key)
elif model_name == 'Qwen': elif model_name == 'Qwen':
llm = Qwen(model_path) llm = Qwen(model_path=model_path, api_key=api_key, api_base=proxy_url)
elif model_name == 'VllmGPT': elif model_name == 'VllmGPT':
llm = VllmGPT() llm = VllmGPT()
return llm return llm

View File

@ -1,12 +1,29 @@
import os import os
import torch import openai
import requests
from transformers import AutoModelForCausalLM, AutoTokenizer '''
`huggingface`连接不上可以使用 `modelscope`
`pip install modelscope`
'''
from modelscope import AutoModelForCausalLM, AutoTokenizer
#from transformers import AutoModelForCausalLM, AutoTokenizer
os.environ['CUDA_LAUNCH_BLOCKING'] = '1' os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
class Qwen: class Qwen:
def __init__(self, model_path="Qwen/Qwen-1_8B-Chat") -> None: def __init__(self, model_path="Qwen/Qwen-1_8B-Chat", api_base=None, api_key=None) -> None:
'''暂时不写api版本,与Linly-api相类似,感兴趣可以实现一下''' '''暂时不写api版本,与Linly-api相类似,感兴趣可以实现一下'''
# 默认本地推理
self.local = True
# api_base和api_key不为空时使用openapi的方式
if api_key is not None and base_url is not None:
openai.api_base = api_base
openai.api_key = api_key
self.local = False
return
self.model, self.tokenizer = self.init_model(model_path) self.model, self.tokenizer = self.init_model(model_path)
self.data = {} self.data = {}
@ -19,7 +36,20 @@ class Qwen:
return model, tokenizer return model, tokenizer
def chat(self, question): def chat(self, question):
# 优先调用qwen openapi的方式
if not self.local:
# 不使用流式回复的请求
response = openai.ChatCompletion.create(
model="Qwen",
messages=[
{"role": "user", "content": question}
],
stream=False,
stop=[]
)
return response.choices[0].message.content
# 默认本地推理
self.data["question"] = f"{question} ### Instruction:{question} ### Response:" self.data["question"] = f"{question} ### Instruction:{question} ### Response:"
try: try:
response, history = self.model.chat(self.tokenizer, self.data["question"], history=None) response, history = self.model.chat(self.tokenizer, self.data["question"], history=None)
@ -34,5 +64,6 @@ def test():
answer = llm.chat(question="如何应对压力?") answer = llm.chat(question="如何应对压力?")
print(answer) print(answer)
if __name__ == '__main__': if __name__ == '__main__':
test() test()