add musetalk
This commit is contained in:
parent
6294f64795
commit
5a4a459ad5
30
README.md
30
README.md
|
@ -88,7 +88,7 @@ python app.py --asr_model facebook/hubert-large-ls960-ft
|
|||
|
||||
### 3.4 设置背景图片
|
||||
```
|
||||
python app.py --bg_img bg.jpg
|
||||
python app.py --bg_img bc.jpg
|
||||
```
|
||||
|
||||
### 3.5 全身视频拼接
|
||||
|
@ -139,6 +139,34 @@ docker run --rm -it -p 1935:1935 -p 1985:1985 -p 8080:8080 registry.cn-hangzhou.
|
|||
python app.py --transport rtmp --push_url 'rtmp://localhost/live/livestream'
|
||||
```
|
||||
用浏览器打开http://serverip:8010/echo.html
|
||||
|
||||
### 3.9 模型用musetalk
|
||||
暂不支持rtmp推送
|
||||
- 安装依赖库
|
||||
```bash
|
||||
conda install ffmpeg
|
||||
pip install --no-cache-dir -U openmim
|
||||
mim install mmengine
|
||||
mim install "mmcv>=2.0.1"
|
||||
mim install "mmdet>=3.1.0"
|
||||
mim install "mmpose>=1.1.0"
|
||||
```
|
||||
- 下载模型
|
||||
下载MuseTalk运行需要的模型,提供一个下载地址 https://caiyun.139.com/m/i?2eAjs2nXXnRgr 提取码:qdg2
|
||||
解压后,将models下文件拷到本项目的models下
|
||||
下载数字人模型,链接: https://caiyun.139.com/m/i?2eAjs8optksop 提取码:3mkt, 解压后将整个文件夹拷到本项目的data/avatars下
|
||||
- 运行
|
||||
python app.py --model musetalk --transport webrtc
|
||||
用浏览器打开http://serverip:8010/webrtc.html
|
||||
可以设置--batch_size 提高显卡利用率,设置--avatar_id 运行不同的数字人
|
||||
#### 替换成自己的数字人
|
||||
```bash
|
||||
git clone https://github.com/TMElyralab/MuseTalk.git
|
||||
cd MuseTalk
|
||||
修改configs/inference/realtime.yaml,将preparation改为True
|
||||
python -m scripts.realtime_inference --inference_config configs/inference/realtime.yaml
|
||||
运行后将results/avatars下文件拷到本项目的data/avatars下
|
||||
```
|
||||
|
||||
## 4. Docker Run
|
||||
不需要第1步的安装,直接运行。
|
||||
|
|
87
app.py
87
app.py
|
@ -419,9 +419,6 @@ if __name__ == '__main__':
|
|||
# parser.add_argument('--asr_model', type=str, default='facebook/wav2vec2-large-960h-lv60-self')
|
||||
# parser.add_argument('--asr_model', type=str, default='facebook/hubert-large-ls960-ft')
|
||||
|
||||
parser.add_argument('--transport', type=str, default='rtcpush') #rtmp webrtc rtcpush
|
||||
parser.add_argument('--push_url', type=str, default='http://localhost:1985/rtc/v1/whip/?app=live&stream=livestream') #rtmp://localhost/live/livestream
|
||||
|
||||
parser.add_argument('--asr_save_feats', action='store_true')
|
||||
# audio FPS
|
||||
parser.add_argument('--fps', type=int, default=50)
|
||||
|
@ -437,6 +434,11 @@ if __name__ == '__main__':
|
|||
parser.add_argument('--fullbody_offset_x', type=int, default=0)
|
||||
parser.add_argument('--fullbody_offset_y', type=int, default=0)
|
||||
|
||||
#musetalk opt
|
||||
parser.add_argument('--avatar_id', type=str, default='avator_1')
|
||||
parser.add_argument('--bbox_shift', type=int, default=5)
|
||||
parser.add_argument('--batch_size', type=int, default=4)
|
||||
|
||||
parser.add_argument('--customvideo', action='store_true', help="custom video")
|
||||
parser.add_argument('--customvideo_img', type=str, default='data/customvideo/img')
|
||||
parser.add_argument('--customvideo_imgnum', type=int, default=1)
|
||||
|
@ -447,59 +449,70 @@ if __name__ == '__main__':
|
|||
parser.add_argument('--CHARACTER', type=str, default='test')
|
||||
parser.add_argument('--EMOTION', type=str, default='default')
|
||||
|
||||
parser.add_argument('--model', type=str, default='ernerf') #musetalk
|
||||
|
||||
parser.add_argument('--transport', type=str, default='rtcpush') #rtmp webrtc rtcpush
|
||||
parser.add_argument('--push_url', type=str, default='http://localhost:1985/rtc/v1/whip/?app=live&stream=livestream') #rtmp://localhost/live/livestream
|
||||
|
||||
parser.add_argument('--listenport', type=int, default=8010)
|
||||
|
||||
opt = parser.parse_args()
|
||||
app.config.from_object(opt)
|
||||
print(app.config)
|
||||
#print(app.config)
|
||||
|
||||
tts_type = opt.tts
|
||||
if tts_type == "xtts":
|
||||
print("Computing the latents for a new reference...")
|
||||
gspeaker = get_speaker(opt.REF_FILE, opt.TTS_SERVER)
|
||||
|
||||
# assert test mode
|
||||
opt.test = True
|
||||
opt.test_train = False
|
||||
#opt.train_camera =True
|
||||
# explicit smoothing
|
||||
opt.smooth_path = True
|
||||
opt.smooth_lips = True
|
||||
if opt.model == 'ernerf':
|
||||
# assert test mode
|
||||
opt.test = True
|
||||
opt.test_train = False
|
||||
#opt.train_camera =True
|
||||
# explicit smoothing
|
||||
opt.smooth_path = True
|
||||
opt.smooth_lips = True
|
||||
|
||||
assert opt.pose != '', 'Must provide a pose source'
|
||||
assert opt.pose != '', 'Must provide a pose source'
|
||||
|
||||
# if opt.O:
|
||||
opt.fp16 = True
|
||||
opt.cuda_ray = True
|
||||
opt.exp_eye = True
|
||||
opt.smooth_eye = True
|
||||
# if opt.O:
|
||||
opt.fp16 = True
|
||||
opt.cuda_ray = True
|
||||
opt.exp_eye = True
|
||||
opt.smooth_eye = True
|
||||
|
||||
if opt.torso_imgs=='': #no img,use model output
|
||||
opt.torso = True
|
||||
if opt.torso_imgs=='': #no img,use model output
|
||||
opt.torso = True
|
||||
|
||||
# assert opt.cuda_ray, "Only support CUDA ray mode."
|
||||
opt.asr = True
|
||||
# assert opt.cuda_ray, "Only support CUDA ray mode."
|
||||
opt.asr = True
|
||||
|
||||
if opt.patch_size > 1:
|
||||
# assert opt.patch_size > 16, "patch_size should > 16 to run LPIPS loss."
|
||||
assert opt.num_rays % (opt.patch_size ** 2) == 0, "patch_size ** 2 should be dividable by num_rays."
|
||||
seed_everything(opt.seed)
|
||||
print(opt)
|
||||
if opt.patch_size > 1:
|
||||
# assert opt.patch_size > 16, "patch_size should > 16 to run LPIPS loss."
|
||||
assert opt.num_rays % (opt.patch_size ** 2) == 0, "patch_size ** 2 should be dividable by num_rays."
|
||||
seed_everything(opt.seed)
|
||||
print(opt)
|
||||
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
model = NeRFNetwork(opt)
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
model = NeRFNetwork(opt)
|
||||
|
||||
criterion = torch.nn.MSELoss(reduction='none')
|
||||
metrics = [] # use no metric in GUI for faster initialization...
|
||||
print(model)
|
||||
trainer = Trainer('ngp', opt, model, device=device, workspace=opt.workspace, criterion=criterion, fp16=opt.fp16, metrics=metrics, use_checkpoint=opt.ckpt)
|
||||
criterion = torch.nn.MSELoss(reduction='none')
|
||||
metrics = [] # use no metric in GUI for faster initialization...
|
||||
print(model)
|
||||
trainer = Trainer('ngp', opt, model, device=device, workspace=opt.workspace, criterion=criterion, fp16=opt.fp16, metrics=metrics, use_checkpoint=opt.ckpt)
|
||||
|
||||
test_loader = NeRFDataset_Test(opt, device=device).dataloader()
|
||||
model.aud_features = test_loader._data.auds
|
||||
model.eye_areas = test_loader._data.eye_area
|
||||
test_loader = NeRFDataset_Test(opt, device=device).dataloader()
|
||||
model.aud_features = test_loader._data.auds
|
||||
model.eye_areas = test_loader._data.eye_area
|
||||
|
||||
# we still need test_loader to provide audio features for testing.
|
||||
nerfreal = NeRFReal(opt, trainer, test_loader)
|
||||
elif opt.model == 'musetalk':
|
||||
from musereal import MuseReal
|
||||
print(opt)
|
||||
nerfreal = MuseReal(opt)
|
||||
|
||||
# we still need test_loader to provide audio features for testing.
|
||||
nerfreal = NeRFReal(opt, trainer, test_loader)
|
||||
#txt_to_audio('我是中国人,我来自北京')
|
||||
if opt.transport=='rtmp':
|
||||
thread_quit = Event()
|
||||
|
|
|
@ -0,0 +1,130 @@
|
|||
import time
|
||||
import torch
|
||||
import numpy as np
|
||||
import soundfile as sf
|
||||
import resampy
|
||||
|
||||
import queue
|
||||
from queue import Queue
|
||||
from io import BytesIO
|
||||
|
||||
from musetalk.whisper.audio2feature import Audio2Feature
|
||||
|
||||
class MuseASR:
|
||||
def __init__(self, opt, audio_processor:Audio2Feature):
|
||||
self.opt = opt
|
||||
|
||||
self.fps = opt.fps # 20 ms per frame
|
||||
self.sample_rate = 16000
|
||||
self.chunk = self.sample_rate // self.fps # 320 samples per chunk (20ms * 16000 / 1000)
|
||||
self.queue = Queue()
|
||||
self.input_stream = BytesIO()
|
||||
self.output_queue = Queue()
|
||||
|
||||
self.audio_processor = audio_processor
|
||||
self.batch_size = opt.batch_size
|
||||
|
||||
self.stride_left_size = self.stride_right_size = 6
|
||||
self.audio_feats = []
|
||||
|
||||
self.warm_up()
|
||||
|
||||
def __create_bytes_stream(self,byte_stream):
|
||||
#byte_stream=BytesIO(buffer)
|
||||
stream, sample_rate = sf.read(byte_stream) # [T*sample_rate,] float64
|
||||
print(f'[INFO]tts audio stream {sample_rate}: {stream.shape}')
|
||||
stream = stream.astype(np.float32)
|
||||
|
||||
if stream.ndim > 1:
|
||||
print(f'[WARN] audio has {stream.shape[1]} channels, only use the first.')
|
||||
stream = stream[:, 0]
|
||||
|
||||
if sample_rate != self.sample_rate and stream.shape[0]>0:
|
||||
print(f'[WARN] audio sample rate is {sample_rate}, resampling into {self.sample_rate}.')
|
||||
stream = resampy.resample(x=stream, sr_orig=sample_rate, sr_new=self.sample_rate)
|
||||
|
||||
return stream
|
||||
|
||||
def push_audio(self,buffer):
|
||||
print(f'[INFO] push_audio {len(buffer)}')
|
||||
if self.opt.tts == "xtts" or self.opt.tts == "gpt-sovits":
|
||||
if len(buffer)>0:
|
||||
stream = np.frombuffer(buffer, dtype=np.int16).astype(np.float32) / 32767
|
||||
if self.opt.tts == "xtts":
|
||||
stream = resampy.resample(x=stream, sr_orig=24000, sr_new=self.sample_rate)
|
||||
else:
|
||||
stream = resampy.resample(x=stream, sr_orig=32000, sr_new=self.sample_rate)
|
||||
#byte_stream=BytesIO(buffer)
|
||||
#stream = self.__create_bytes_stream(byte_stream)
|
||||
streamlen = stream.shape[0]
|
||||
idx=0
|
||||
while streamlen >= self.chunk:
|
||||
self.queue.put(stream[idx:idx+self.chunk])
|
||||
streamlen -= self.chunk
|
||||
idx += self.chunk
|
||||
# if streamlen>0: #skip last frame(not 20ms)
|
||||
# self.queue.put(stream[idx:])
|
||||
else: #edge tts
|
||||
self.input_stream.write(buffer)
|
||||
if len(buffer)<=0:
|
||||
self.input_stream.seek(0)
|
||||
stream = self.__create_bytes_stream(self.input_stream)
|
||||
streamlen = stream.shape[0]
|
||||
idx=0
|
||||
while streamlen >= self.chunk:
|
||||
self.queue.put(stream[idx:idx+self.chunk])
|
||||
streamlen -= self.chunk
|
||||
idx += self.chunk
|
||||
#if streamlen>0: #skip last frame(not 20ms)
|
||||
# self.queue.put(stream[idx:])
|
||||
self.input_stream.seek(0)
|
||||
self.input_stream.truncate()
|
||||
|
||||
def __get_audio_frame(self):
|
||||
try:
|
||||
frame = self.queue.get(block=False)
|
||||
type = 0
|
||||
print(f'[INFO] get frame {frame.shape}')
|
||||
except queue.Empty:
|
||||
frame = np.zeros(self.chunk, dtype=np.float32)
|
||||
type = 1
|
||||
|
||||
return frame,type
|
||||
|
||||
def get_audio_out(self): #get origin audio pcm to nerf
|
||||
return self.output_queue.get()
|
||||
|
||||
def warm_up(self):
|
||||
frames = []
|
||||
for _ in range(self.stride_left_size + self.stride_right_size):
|
||||
audio_frame,type=self.__get_audio_frame()
|
||||
frames.append(audio_frame)
|
||||
self.output_queue.put((audio_frame,type))
|
||||
inputs = np.concatenate(frames) # [N * chunk]
|
||||
whisper_feature = self.audio_processor.audio2feat(inputs)
|
||||
for feature in whisper_feature:
|
||||
self.audio_feats.append(feature)
|
||||
|
||||
for _ in range(self.stride_left_size):
|
||||
self.output_queue.get()
|
||||
|
||||
def run_step(self):
|
||||
############################################## extract audio feature ##############################################
|
||||
start_time = time.time()
|
||||
frames = []
|
||||
for _ in range(self.batch_size*2):
|
||||
audio_frame,type=self.__get_audio_frame()
|
||||
frames.append(audio_frame)
|
||||
self.output_queue.put((audio_frame,type))
|
||||
inputs = np.concatenate(frames) # [N * chunk]
|
||||
whisper_feature = self.audio_processor.audio2feat(inputs)
|
||||
for feature in whisper_feature:
|
||||
self.audio_feats.append(feature)
|
||||
|
||||
#print(f"processing audio costs {(time.time() - start_time) * 1000}ms, inputs shape:{inputs.shape} whisper_feature len:{len(whisper_feature)}")
|
||||
|
||||
def get_next_feat(self):
|
||||
whisper_chunks = self.audio_processor.feature2chunks(feature_array=self.audio_feats,fps=self.fps/2,batch_size=self.batch_size,start=self.stride_left_size/2 )
|
||||
#print(f"whisper_chunks len:{len(whisper_chunks)},self.audio_feats len:{len(self.audio_feats)},self.output_queue len:{self.output_queue.qsize()}")
|
||||
self.audio_feats = self.audio_feats[-(self.stride_left_size + self.stride_right_size):]
|
||||
return whisper_chunks
|
|
@ -0,0 +1,194 @@
|
|||
import math
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
#from .utils import *
|
||||
import subprocess
|
||||
import os
|
||||
import time
|
||||
import torch.nn.functional as F
|
||||
import cv2
|
||||
import glob
|
||||
import pickle
|
||||
import copy
|
||||
|
||||
import queue
|
||||
from queue import Queue
|
||||
from threading import Thread, Event
|
||||
from io import BytesIO
|
||||
|
||||
from musetalk.utils.utils import get_file_type,get_video_fps,datagen
|
||||
from musetalk.utils.preprocessing import get_landmark_and_bbox,read_imgs,coord_placeholder
|
||||
from musetalk.utils.blending import get_image,get_image_prepare_material,get_image_blending
|
||||
from musetalk.utils.utils import load_all_model
|
||||
|
||||
from museasr import MuseASR
|
||||
import asyncio
|
||||
from av import AudioFrame, VideoFrame
|
||||
|
||||
class MuseReal:
|
||||
def __init__(self, opt):
|
||||
self.opt = opt # shared with the trainer's opt to support in-place modification of rendering parameters.
|
||||
self.W = opt.W
|
||||
self.H = opt.H
|
||||
|
||||
self.fps = opt.fps # 20 ms per frame
|
||||
|
||||
#### musetalk
|
||||
self.avatar_id = opt.avatar_id
|
||||
self.video_path = '' #video_path
|
||||
self.bbox_shift = opt.bbox_shift
|
||||
self.avatar_path = f"./data/avatars/{self.avatar_id}"
|
||||
self.full_imgs_path = f"{self.avatar_path}/full_imgs"
|
||||
self.coords_path = f"{self.avatar_path}/coords.pkl"
|
||||
self.latents_out_path= f"{self.avatar_path}/latents.pt"
|
||||
self.video_out_path = f"{self.avatar_path}/vid_output/"
|
||||
self.mask_out_path =f"{self.avatar_path}/mask"
|
||||
self.mask_coords_path =f"{self.avatar_path}/mask_coords.pkl"
|
||||
self.avatar_info_path = f"{self.avatar_path}/avator_info.json"
|
||||
self.avatar_info = {
|
||||
"avatar_id":self.avatar_id,
|
||||
"video_path":self.video_path,
|
||||
"bbox_shift":self.bbox_shift
|
||||
}
|
||||
self.batch_size = opt.batch_size
|
||||
self.idx = 0
|
||||
self.res_frame_queue = Queue()
|
||||
self.__loadmodels()
|
||||
self.__loadavatar()
|
||||
|
||||
self.asr = MuseASR(opt,self.audio_processor)
|
||||
|
||||
def __loadmodels(self):
|
||||
# load model weights
|
||||
self.audio_processor, self.vae, self.unet, self.pe = load_all_model()
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
self.timesteps = torch.tensor([0], device=device)
|
||||
self.pe = self.pe.half()
|
||||
self.vae.vae = self.vae.vae.half()
|
||||
self.unet.model = self.unet.model.half()
|
||||
|
||||
def __loadavatar(self):
|
||||
self.input_latent_list_cycle = torch.load(self.latents_out_path)
|
||||
with open(self.coords_path, 'rb') as f:
|
||||
self.coord_list_cycle = pickle.load(f)
|
||||
input_img_list = glob.glob(os.path.join(self.full_imgs_path, '*.[jpJP][pnPN]*[gG]'))
|
||||
input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
|
||||
self.frame_list_cycle = read_imgs(input_img_list)
|
||||
with open(self.mask_coords_path, 'rb') as f:
|
||||
self.mask_coords_list_cycle = pickle.load(f)
|
||||
input_mask_list = glob.glob(os.path.join(self.mask_out_path, '*.[jpJP][pnPN]*[gG]'))
|
||||
input_mask_list = sorted(input_mask_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
|
||||
self.mask_list_cycle = read_imgs(input_mask_list)
|
||||
|
||||
|
||||
def push_audio(self,buffer):
|
||||
self.asr.push_audio(buffer)
|
||||
|
||||
def __mirror_index(self, index):
|
||||
size = len(self.coord_list_cycle)
|
||||
turn = index // size
|
||||
res = index % size
|
||||
if turn % 2 == 0:
|
||||
return res
|
||||
else:
|
||||
return size - res - 1
|
||||
|
||||
def test_step(self,loop=None,audio_track=None,video_track=None):
|
||||
|
||||
# gen = datagen(whisper_chunks,
|
||||
# self.input_latent_list_cycle,
|
||||
# self.batch_size)
|
||||
self.asr.run_step()
|
||||
whisper_chunks = self.asr.get_next_feat()
|
||||
whisper_batch = np.stack(whisper_chunks)
|
||||
latent_batch = []
|
||||
for i in range(self.batch_size):
|
||||
idx = self.__mirror_index(self.idx+i)
|
||||
latent = self.input_latent_list_cycle[idx]
|
||||
latent_batch.append(latent)
|
||||
latent_batch = torch.cat(latent_batch, dim=0)
|
||||
|
||||
# for i, (whisper_batch,latent_batch) in enumerate(gen):
|
||||
audio_feature_batch = torch.from_numpy(whisper_batch)
|
||||
audio_feature_batch = audio_feature_batch.to(device=self.unet.device,
|
||||
dtype=self.unet.model.dtype)
|
||||
audio_feature_batch = self.pe(audio_feature_batch)
|
||||
latent_batch = latent_batch.to(dtype=self.unet.model.dtype)
|
||||
|
||||
pred_latents = self.unet.model(latent_batch,
|
||||
self.timesteps,
|
||||
encoder_hidden_states=audio_feature_batch).sample
|
||||
recon = self.vae.decode_latents(pred_latents)
|
||||
#print('diffusion len=',len(recon))
|
||||
for res_frame in recon:
|
||||
#self.__pushmedia(res_frame,loop,audio_track,video_track)
|
||||
self.res_frame_queue.put((res_frame,self.__mirror_index(self.idx)))
|
||||
self.idx = self.idx + 1
|
||||
|
||||
|
||||
def process_frames(self,quit_event,loop=None,audio_track=None,video_track=None):
|
||||
|
||||
while not quit_event.is_set():
|
||||
try:
|
||||
res_frame,idx = self.res_frame_queue.get(block=True, timeout=1)
|
||||
except queue.Empty:
|
||||
continue
|
||||
bbox = self.coord_list_cycle[idx]
|
||||
ori_frame = copy.deepcopy(self.frame_list_cycle[idx])
|
||||
x1, y1, x2, y2 = bbox
|
||||
try:
|
||||
res_frame = cv2.resize(res_frame.astype(np.uint8),(x2-x1,y2-y1))
|
||||
except:
|
||||
continue
|
||||
mask = self.mask_list_cycle[idx]
|
||||
mask_crop_box = self.mask_coords_list_cycle[idx]
|
||||
#combine_frame = get_image(ori_frame,res_frame,bbox)
|
||||
combine_frame = get_image_blending(ori_frame,res_frame,bbox,mask,mask_crop_box)
|
||||
|
||||
image = combine_frame #(outputs['image'] * 255).astype(np.uint8)
|
||||
new_frame = VideoFrame.from_ndarray(image, format="bgr24")
|
||||
asyncio.run_coroutine_threadsafe(video_track._queue.put(new_frame), loop)
|
||||
|
||||
audiotype = 0
|
||||
for _ in range(2):
|
||||
frame,type = self.asr.get_audio_out()
|
||||
audiotype += type
|
||||
frame = (frame * 32767).astype(np.int16)
|
||||
new_frame = AudioFrame(format='s16', layout='mono', samples=frame.shape[0])
|
||||
new_frame.planes[0].update(frame.tobytes())
|
||||
new_frame.sample_rate=16000
|
||||
# if audio_track._queue.qsize()>10:
|
||||
# time.sleep(0.1)
|
||||
asyncio.run_coroutine_threadsafe(audio_track._queue.put(new_frame), loop)
|
||||
|
||||
def render(self,quit_event,loop=None,audio_track=None,video_track=None):
|
||||
#if self.opt.asr:
|
||||
# self.asr.warm_up()
|
||||
|
||||
process_thread = Thread(target=self.process_frames, args=(quit_event,loop,audio_track,video_track))
|
||||
process_thread.start()
|
||||
|
||||
count=0
|
||||
totaltime=0
|
||||
_starttime=time.perf_counter()
|
||||
#_totalframe=0
|
||||
while not quit_event.is_set(): #todo
|
||||
# update texture every frame
|
||||
# audio stream thread...
|
||||
t = time.perf_counter()
|
||||
self.test_step(loop,audio_track,video_track)
|
||||
totaltime += (time.perf_counter() - t)
|
||||
count += self.opt.batch_size
|
||||
#_totalframe += 1
|
||||
if count>=100:
|
||||
print(f"------actual avg infer fps:{count/totaltime:.4f}")
|
||||
count=0
|
||||
totaltime=0
|
||||
if self.res_frame_queue.qsize()>2*self.opt.batch_size:
|
||||
time.sleep(0.1)
|
||||
#print('sleep')
|
||||
# delay = _starttime+_totalframe*0.04-time.perf_counter() #40ms
|
||||
# if delay > 0:
|
||||
# time.sleep(delay)
|
||||
|
|
@ -59,6 +59,7 @@ class Audio2Feature():
|
|||
for dt in range(-audio_feat_length[0],audio_feat_length[1]+1):
|
||||
left_idx = int((vid_idx+dt)*50/fps)
|
||||
if left_idx<1 or left_idx>length-1:
|
||||
print('test-----,left_idx=',left_idx)
|
||||
left_idx = max(0, left_idx)
|
||||
left_idx = min(length-1, left_idx)
|
||||
|
||||
|
@ -78,19 +79,20 @@ class Audio2Feature():
|
|||
return selected_feature,selected_idx
|
||||
|
||||
|
||||
def feature2chunks(self,feature_array,fps,audio_feat_length = [2,2]):
|
||||
def feature2chunks(self,feature_array,fps,batch_size,audio_feat_length = [2,2],start=0):
|
||||
whisper_chunks = []
|
||||
whisper_idx_multiplier = 50./fps
|
||||
i = 0
|
||||
print(f"video in {fps} FPS, audio idx in 50FPS")
|
||||
while 1:
|
||||
start_idx = int(i * whisper_idx_multiplier)
|
||||
selected_feature,selected_idx = self.get_sliced_feature(feature_array= feature_array,vid_idx = i,audio_feat_length=audio_feat_length,fps=fps)
|
||||
#print(f"video in {fps} FPS, audio idx in 50FPS")
|
||||
for _ in range(batch_size):
|
||||
# start_idx = int(i * whisper_idx_multiplier)
|
||||
# if start_idx>=len(feature_array):
|
||||
# break
|
||||
selected_feature,selected_idx = self.get_sliced_feature(feature_array= feature_array,vid_idx = i+start,audio_feat_length=audio_feat_length,fps=fps)
|
||||
#print(f"i:{i},selected_idx {selected_idx}")
|
||||
whisper_chunks.append(selected_feature)
|
||||
i += 1
|
||||
if start_idx>len(feature_array):
|
||||
break
|
||||
|
||||
|
||||
return whisper_chunks
|
||||
|
||||
|
|
|
@ -27,9 +27,14 @@ lpips
|
|||
imageio-ffmpeg
|
||||
|
||||
transformers
|
||||
edge_tts
|
||||
edge_tts==6.1.11
|
||||
flask
|
||||
flask_sockets
|
||||
opencv-python-headless
|
||||
aiortc
|
||||
aiohttp_cors
|
||||
|
||||
ffmpeg-python
|
||||
omegaconf
|
||||
diffusers
|
||||
accelerate
|
||||
|
|
Loading…
Reference in New Issue