feat: add musereal static img

This commit is contained in:
Yun 2024-06-19 14:47:57 +08:00
parent 592312ab8c
commit 5da818b9d9
2 changed files with 113 additions and 106 deletions

1
app.py
View File

@ -285,6 +285,7 @@ if __name__ == '__main__':
parser.add_argument('--batch_size', type=int, default=16)
parser.add_argument('--customvideo', action='store_true', help="custom video")
parser.add_argument('--static_img', action='store_true', help="Use the first photo as a time of rest")
parser.add_argument('--customvideo_img', type=str, default='data/customvideo/img')
parser.add_argument('--customvideo_imgnum', type=int, default=1)

View File

@ -2,7 +2,7 @@ import math
import torch
import numpy as np
#from .utils import *
# from .utils import *
import subprocess
import os
import time
@ -18,17 +18,19 @@ from threading import Thread, Event
from io import BytesIO
import multiprocessing as mp
from musetalk.utils.utils import get_file_type,get_video_fps,datagen
#from musetalk.utils.preprocessing import get_landmark_and_bbox,read_imgs,coord_placeholder
from musetalk.utils.blending import get_image,get_image_prepare_material,get_image_blending
from musetalk.utils.utils import load_all_model,load_diffusion_model,load_audio_model
from ttsreal import EdgeTTS,VoitsTTS,XTTS
from musetalk.utils.utils import get_file_type, get_video_fps, datagen
# from musetalk.utils.preprocessing import get_landmark_and_bbox,read_imgs,coord_placeholder
from musetalk.utils.blending import get_image, get_image_prepare_material, get_image_blending
from musetalk.utils.utils import load_all_model, load_diffusion_model, load_audio_model
from ttsreal import EdgeTTS, VoitsTTS, XTTS
from museasr import MuseASR
import asyncio
from av import AudioFrame, VideoFrame
from tqdm import tqdm
def read_imgs(img_list):
frames = []
print('reading images...')
@ -37,8 +39,9 @@ def read_imgs(img_list):
frames.append(frame)
return frames
def __mirror_index(size, index):
#size = len(self.coord_list_cycle)
# size = len(self.coord_list_cycle)
turn = index // size
res = index % size
if turn % 2 == 0:
@ -46,8 +49,9 @@ def __mirror_index(size, index):
else:
return size - res - 1
def inference(render_event,batch_size,latents_out_path,audio_feat_queue,audio_out_queue,res_frame_queue,
): #vae, unet, pe,timesteps
def inference(render_event, batch_size, latents_out_path, audio_feat_queue, audio_out_queue, res_frame_queue,
): # vae, unet, pe,timesteps
vae, unet, pe = load_diffusion_model()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
@ -59,34 +63,34 @@ def inference(render_event,batch_size,latents_out_path,audio_feat_queue,audio_ou
input_latent_list_cycle = torch.load(latents_out_path)
length = len(input_latent_list_cycle)
index = 0
count=0
counttime=0
count = 0
counttime = 0
print('start inference')
while True:
if render_event.is_set():
starttime=time.perf_counter()
starttime = time.perf_counter()
try:
whisper_chunks = audio_feat_queue.get(block=True, timeout=1)
except queue.Empty:
continue
is_all_silence=True
is_all_silence = True
audio_frames = []
for _ in range(batch_size*2):
frame,type = audio_out_queue.get()
audio_frames.append((frame,type))
if type==0:
is_all_silence=False
for _ in range(batch_size * 2):
frame, type = audio_out_queue.get()
audio_frames.append((frame, type))
if type == 0:
is_all_silence = False
if is_all_silence:
for i in range(batch_size):
res_frame_queue.put((None,__mirror_index(length,index),audio_frames[i*2:i*2+2]))
res_frame_queue.put((None, __mirror_index(length, index), audio_frames[i * 2:i * 2 + 2]))
index = index + 1
else:
# print('infer=======')
t=time.perf_counter()
t = time.perf_counter()
whisper_batch = np.stack(whisper_chunks)
latent_batch = []
for i in range(batch_size):
idx = __mirror_index(length,index+i)
idx = __mirror_index(length, index + i)
latent = input_latent_list_cycle[idx]
latent_batch.append(latent)
latent_batch = torch.cat(latent_batch, dim=0)
@ -107,23 +111,24 @@ def inference(render_event,batch_size,latents_out_path,audio_feat_queue,audio_ou
# t=time.perf_counter()
recon = vae.decode_latents(pred_latents)
# print('vae time:',time.perf_counter()-t)
#print('diffusion len=',len(recon))
# print('diffusion len=',len(recon))
counttime += (time.perf_counter() - t)
count += batch_size
#_totalframe += 1
if count>=100:
print(f"------actual avg infer fps:{count/counttime:.4f}")
count=0
counttime=0
for i,res_frame in enumerate(recon):
#self.__pushmedia(res_frame,loop,audio_track,video_track)
res_frame_queue.put((res_frame,__mirror_index(length,index),audio_frames[i*2:i*2+2]))
# _totalframe += 1
if count >= 100:
print(f"------actual avg infer fps:{count / counttime:.4f}")
count = 0
counttime = 0
for i, res_frame in enumerate(recon):
# self.__pushmedia(res_frame,loop,audio_track,video_track)
res_frame_queue.put((res_frame, __mirror_index(length, index), audio_frames[i * 2:i * 2 + 2]))
index = index + 1
#print('total batch time:',time.perf_counter()-starttime)
# print('total batch time:',time.perf_counter()-starttime)
else:
time.sleep(1)
print('musereal inference processor stop')
@torch.no_grad()
class MuseReal:
def __init__(self, opt):
@ -135,44 +140,45 @@ class MuseReal:
#### musetalk
self.avatar_id = opt.avatar_id
self.video_path = '' #video_path
self.static_img = opt.static_img
self.video_path = '' # video_path
self.bbox_shift = opt.bbox_shift
self.avatar_path = f"./data/avatars/{self.avatar_id}"
self.full_imgs_path = f"{self.avatar_path}/full_imgs"
self.coords_path = f"{self.avatar_path}/coords.pkl"
self.latents_out_path= f"{self.avatar_path}/latents.pt"
self.latents_out_path = f"{self.avatar_path}/latents.pt"
self.video_out_path = f"{self.avatar_path}/vid_output/"
self.mask_out_path =f"{self.avatar_path}/mask"
self.mask_coords_path =f"{self.avatar_path}/mask_coords.pkl"
self.mask_out_path = f"{self.avatar_path}/mask"
self.mask_coords_path = f"{self.avatar_path}/mask_coords.pkl"
self.avatar_info_path = f"{self.avatar_path}/avator_info.json"
self.avatar_info = {
"avatar_id":self.avatar_id,
"video_path":self.video_path,
"bbox_shift":self.bbox_shift
"avatar_id": self.avatar_id,
"video_path": self.video_path,
"bbox_shift": self.bbox_shift
}
self.batch_size = opt.batch_size
self.idx = 0
self.res_frame_queue = mp.Queue(self.batch_size*2)
self.res_frame_queue = mp.Queue(self.batch_size * 2)
self.__loadmodels()
self.__loadavatar()
self.asr = MuseASR(opt,self.audio_processor)
self.asr = MuseASR(opt, self.audio_processor)
if opt.tts == "edgetts":
self.tts = EdgeTTS(opt,self)
self.tts = EdgeTTS(opt, self)
elif opt.tts == "gpt-sovits":
self.tts = VoitsTTS(opt,self)
self.tts = VoitsTTS(opt, self)
elif opt.tts == "xtts":
self.tts = XTTS(opt,self)
#self.__warm_up()
self.tts = XTTS(opt, self)
# self.__warm_up()
self.render_event = mp.Event()
mp.Process(target=inference, args=(self.render_event,self.batch_size,self.latents_out_path,
self.asr.feat_queue,self.asr.output_queue,self.res_frame_queue,
)).start() #self.vae, self.unet, self.pe,self.timesteps
mp.Process(target=inference, args=(self.render_event, self.batch_size, self.latents_out_path,
self.asr.feat_queue, self.asr.output_queue, self.res_frame_queue,
)).start() # self.vae, self.unet, self.pe,self.timesteps
def __loadmodels(self):
# load model weights
self.audio_processor= load_audio_model()
self.audio_processor = load_audio_model()
# self.audio_processor, self.vae, self.unet, self.pe = load_all_model()
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# self.timesteps = torch.tensor([0], device=device)
@ -181,7 +187,7 @@ class MuseReal:
# self.unet.model = self.unet.model.half()
def __loadavatar(self):
#self.input_latent_list_cycle = torch.load(self.latents_out_path)
# self.input_latent_list_cycle = torch.load(self.latents_out_path)
with open(self.coords_path, 'rb') as f:
self.coord_list_cycle = pickle.load(f)
input_img_list = glob.glob(os.path.join(self.full_imgs_path, '*.[jpJP][pnPN]*[gG]'))
@ -193,11 +199,10 @@ class MuseReal:
input_mask_list = sorted(input_mask_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
self.mask_list_cycle = read_imgs(input_mask_list)
def put_msg_txt(self,msg):
def put_msg_txt(self, msg):
self.tts.put_msg_txt(msg)
def put_audio_frame(self,audio_chunk): #16khz 20ms pcm
def put_audio_frame(self, audio_chunk): # 16khz 20ms pcm
self.asr.put_audio_frame(audio_chunk)
def __mirror_index(self, index):
@ -215,7 +220,7 @@ class MuseReal:
whisper_batch = np.stack(whisper_chunks)
latent_batch = []
for i in range(self.batch_size):
idx = self.__mirror_index(self.idx+i)
idx = self.__mirror_index(self.idx + i)
latent = self.input_latent_list_cycle[idx]
latent_batch.append(latent)
latent_batch = torch.cat(latent_batch, dim=0)
@ -232,78 +237,79 @@ class MuseReal:
encoder_hidden_states=audio_feature_batch).sample
recon = self.vae.decode_latents(pred_latents)
def process_frames(self,quit_event,loop=None,audio_track=None,video_track=None):
def process_frames(self, quit_event, loop=None, audio_track=None, video_track=None):
while not quit_event.is_set():
try:
res_frame,idx,audio_frames = self.res_frame_queue.get(block=True, timeout=1)
res_frame, idx, audio_frames = self.res_frame_queue.get(block=True, timeout=1)
except queue.Empty:
continue
if audio_frames[0][1]==1 and audio_frames[1][1]==1: #全为静音数据只需要取fullimg
if audio_frames[0][1] == 1 and audio_frames[1][1] == 1: # 全为静音数据只需要取fullimg
if self.static_img:
combine_frame = self.frame_list_cycle[0]
else:
combine_frame = self.frame_list_cycle[idx]
else:
bbox = self.coord_list_cycle[idx]
ori_frame = copy.deepcopy(self.frame_list_cycle[idx])
x1, y1, x2, y2 = bbox
try:
res_frame = cv2.resize(res_frame.astype(np.uint8),(x2-x1,y2-y1))
res_frame = cv2.resize(res_frame.astype(np.uint8), (x2 - x1, y2 - y1))
except:
continue
mask = self.mask_list_cycle[idx]
mask_crop_box = self.mask_coords_list_cycle[idx]
#combine_frame = get_image(ori_frame,res_frame,bbox)
#t=time.perf_counter()
combine_frame = get_image_blending(ori_frame,res_frame,bbox,mask,mask_crop_box)
#print('blending time:',time.perf_counter()-t)
# combine_frame = get_image(ori_frame,res_frame,bbox)
# t=time.perf_counter()
combine_frame = get_image_blending(ori_frame, res_frame, bbox, mask, mask_crop_box)
# print('blending time:',time.perf_counter()-t)
image = combine_frame #(outputs['image'] * 255).astype(np.uint8)
image = combine_frame # (outputs['image'] * 255).astype(np.uint8)
new_frame = VideoFrame.from_ndarray(image, format="bgr24")
asyncio.run_coroutine_threadsafe(video_track._queue.put(new_frame), loop)
for audio_frame in audio_frames:
frame,type = audio_frame
frame, type = audio_frame
frame = (frame * 32767).astype(np.int16)
new_frame = AudioFrame(format='s16', layout='mono', samples=frame.shape[0])
new_frame.planes[0].update(frame.tobytes())
new_frame.sample_rate=16000
new_frame.sample_rate = 16000
# if audio_track._queue.qsize()>10:
# time.sleep(0.1)
asyncio.run_coroutine_threadsafe(audio_track._queue.put(new_frame), loop)
print('musereal process_frames thread stop')
def render(self,quit_event,loop=None,audio_track=None,video_track=None):
#if self.opt.asr:
def render(self, quit_event, loop=None, audio_track=None, video_track=None):
# if self.opt.asr:
# self.asr.warm_up()
self.tts.render(quit_event)
process_thread = Thread(target=self.process_frames, args=(quit_event,loop,audio_track,video_track))
process_thread = Thread(target=self.process_frames, args=(quit_event, loop, audio_track, video_track))
process_thread.start()
self.render_event.set() #start infer process render
count=0
totaltime=0
_starttime=time.perf_counter()
#_totalframe=0
while not quit_event.is_set(): #todo
self.render_event.set() # start infer process render
count = 0
totaltime = 0
_starttime = time.perf_counter()
# _totalframe=0
while not quit_event.is_set(): # todo
# update texture every frame
# audio stream thread...
t = time.perf_counter()
self.asr.run_step()
#self.test_step(loop,audio_track,video_track)
# self.test_step(loop,audio_track,video_track)
# totaltime += (time.perf_counter() - t)
# count += self.opt.batch_size
# if count>=100:
# print(f"------actual avg infer fps:{count/totaltime:.4f}")
# count=0
# totaltime=0
if video_track._queue.qsize()>=2*self.opt.batch_size:
print('sleep qsize=',video_track._queue.qsize())
time.sleep(0.04*self.opt.batch_size*1.5)
if video_track._queue.qsize() >= 2 * self.opt.batch_size:
print('sleep qsize=', video_track._queue.qsize())
time.sleep(0.04 * self.opt.batch_size * 1.5)
# delay = _starttime+_totalframe*0.04-time.perf_counter() #40ms
# if delay > 0:
# time.sleep(delay)
self.render_event.clear() #end infer process render
self.render_event.clear() # end infer process render
print('musereal thread stop')