add musetalk init

This commit is contained in:
lipku 2024-05-25 06:33:59 +08:00
parent 55adec9f3f
commit 6294f64795
46 changed files with 107045 additions and 0 deletions

47
musetalk/models/unet.py Executable file
View File

@ -0,0 +1,47 @@
import torch
import torch.nn as nn
import math
import json
from diffusers import UNet2DConditionModel
import sys
import time
import numpy as np
import os
class PositionalEncoding(nn.Module):
def __init__(self, d_model=384, max_len=5000):
super(PositionalEncoding, self).__init__()
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
b, seq_len, d_model = x.size()
pe = self.pe[:, :seq_len, :]
x = x + pe.to(x.device)
return x
class UNet():
def __init__(self,
unet_config,
model_path,
use_float16=False,
):
with open(unet_config, 'r') as f:
unet_config = json.load(f)
self.model = UNet2DConditionModel(**unet_config)
self.pe = PositionalEncoding(d_model=384)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
weights = torch.load(model_path) if torch.cuda.is_available() else torch.load(model_path, map_location=self.device)
self.model.load_state_dict(weights)
if use_float16:
self.model = self.model.half()
self.model.to(self.device)
if __name__ == "__main__":
unet = UNet()

148
musetalk/models/vae.py Executable file
View File

@ -0,0 +1,148 @@
from diffusers import AutoencoderKL
import torch
import torchvision.transforms as transforms
import torch.nn.functional as F
import cv2
import numpy as np
from PIL import Image
import os
class VAE():
"""
VAE (Variational Autoencoder) class for image processing.
"""
def __init__(self, model_path="./models/sd-vae-ft-mse/", resized_img=256, use_float16=False):
"""
Initialize the VAE instance.
:param model_path: Path to the trained model.
:param resized_img: The size to which images are resized.
:param use_float16: Whether to use float16 precision.
"""
self.model_path = model_path
self.vae = AutoencoderKL.from_pretrained(self.model_path)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.vae.to(self.device)
if use_float16:
self.vae = self.vae.half()
self._use_float16 = True
else:
self._use_float16 = False
self.scaling_factor = self.vae.config.scaling_factor
self.transform = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
self._resized_img = resized_img
self._mask_tensor = self.get_mask_tensor()
def get_mask_tensor(self):
"""
Creates a mask tensor for image processing.
:return: A mask tensor.
"""
mask_tensor = torch.zeros((self._resized_img,self._resized_img))
mask_tensor[:self._resized_img//2,:] = 1
mask_tensor[mask_tensor< 0.5] = 0
mask_tensor[mask_tensor>= 0.5] = 1
return mask_tensor
def preprocess_img(self,img_name,half_mask=False):
"""
Preprocess an image for the VAE.
:param img_name: The image file path or a list of image file paths.
:param half_mask: Whether to apply a half mask to the image.
:return: A preprocessed image tensor.
"""
window = []
if isinstance(img_name, str):
window_fnames = [img_name]
for fname in window_fnames:
img = cv2.imread(fname)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = cv2.resize(img, (self._resized_img, self._resized_img),
interpolation=cv2.INTER_LANCZOS4)
window.append(img)
else:
img = cv2.cvtColor(img_name, cv2.COLOR_BGR2RGB)
window.append(img)
x = np.asarray(window) / 255.
x = np.transpose(x, (3, 0, 1, 2))
x = torch.squeeze(torch.FloatTensor(x))
if half_mask:
x = x * (self._mask_tensor>0.5)
x = self.transform(x)
x = x.unsqueeze(0) # [1, 3, 256, 256] torch tensor
x = x.to(self.vae.device)
return x
def encode_latents(self,image):
"""
Encode an image into latent variables.
:param image: The image tensor to encode.
:return: The encoded latent variables.
"""
with torch.no_grad():
init_latent_dist = self.vae.encode(image.to(self.vae.dtype)).latent_dist
init_latents = self.scaling_factor * init_latent_dist.sample()
return init_latents
def decode_latents(self, latents):
"""
Decode latent variables back into an image.
:param latents: The latent variables to decode.
:return: A NumPy array representing the decoded image.
"""
latents = (1/ self.scaling_factor) * latents
image = self.vae.decode(latents.to(self.vae.dtype)).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).float().numpy()
image = (image * 255).round().astype("uint8")
image = image[...,::-1] # RGB to BGR
return image
def get_latents_for_unet(self,img):
"""
Prepare latent variables for a U-Net model.
:param img: The image to process.
:return: A concatenated tensor of latents for U-Net input.
"""
ref_image = self.preprocess_img(img,half_mask=True) # [1, 3, 256, 256] RGB, torch tensor
masked_latents = self.encode_latents(ref_image) # [1, 4, 32, 32], torch tensor
ref_image = self.preprocess_img(img,half_mask=False) # [1, 3, 256, 256] RGB, torch tensor
ref_latents = self.encode_latents(ref_image) # [1, 4, 32, 32], torch tensor
latent_model_input = torch.cat([masked_latents, ref_latents], dim=1)
return latent_model_input
if __name__ == "__main__":
vae_mode_path = "./models/sd-vae-ft-mse/"
vae = VAE(model_path = vae_mode_path,use_float16=False)
img_path = "./results/sun001_crop/00000.png"
crop_imgs_path = "./results/sun001_crop/"
latents_out_path = "./results/latents/"
if not os.path.exists(latents_out_path):
os.mkdir(latents_out_path)
files = os.listdir(crop_imgs_path)
files.sort()
files = [file for file in files if file.split(".")[-1] == "png"]
for file in files:
index = file.split(".")[0]
img_path = crop_imgs_path + file
latents = vae.get_latents_for_unet(img_path)
print(img_path,"latents",latents.size())
#torch.save(latents,os.path.join(latents_out_path,index+".pt"))
#reload_tensor = torch.load('tensor.pt')
#print(reload_tensor.size())

View File

@ -0,0 +1,5 @@
import sys
from os.path import abspath, dirname
current_dir = dirname(abspath(__file__))
parent_dir = dirname(current_dir)
sys.path.append(parent_dir+'/utils')

100
musetalk/utils/blending.py Normal file
View File

@ -0,0 +1,100 @@
from PIL import Image
import numpy as np
import cv2
from face_parsing import FaceParsing
fp = FaceParsing()
def get_crop_box(box, expand):
x, y, x1, y1 = box
x_c, y_c = (x+x1)//2, (y+y1)//2
w, h = x1-x, y1-y
s = int(max(w, h)//2*expand)
crop_box = [x_c-s, y_c-s, x_c+s, y_c+s]
return crop_box, s
def face_seg(image):
seg_image = fp(image)
if seg_image is None:
print("error, no person_segment")
return None
seg_image = seg_image.resize(image.size)
return seg_image
def get_image(image,face,face_box,upper_boundary_ratio = 0.5,expand=1.2):
#print(image.shape)
#print(face.shape)
body = Image.fromarray(image[:,:,::-1])
face = Image.fromarray(face[:,:,::-1])
x, y, x1, y1 = face_box
#print(x1-x,y1-y)
crop_box, s = get_crop_box(face_box, expand)
x_s, y_s, x_e, y_e = crop_box
face_position = (x, y)
face_large = body.crop(crop_box)
ori_shape = face_large.size
mask_image = face_seg(face_large)
mask_small = mask_image.crop((x-x_s, y-y_s, x1-x_s, y1-y_s))
mask_image = Image.new('L', ori_shape, 0)
mask_image.paste(mask_small, (x-x_s, y-y_s, x1-x_s, y1-y_s))
# keep upper_boundary_ratio of talking area
width, height = mask_image.size
top_boundary = int(height * upper_boundary_ratio)
modified_mask_image = Image.new('L', ori_shape, 0)
modified_mask_image.paste(mask_image.crop((0, top_boundary, width, height)), (0, top_boundary))
blur_kernel_size = int(0.1 * ori_shape[0] // 2 * 2) + 1
mask_array = cv2.GaussianBlur(np.array(modified_mask_image), (blur_kernel_size, blur_kernel_size), 0)
mask_image = Image.fromarray(mask_array)
face_large.paste(face, (x-x_s, y-y_s, x1-x_s, y1-y_s))
body.paste(face_large, crop_box[:2], mask_image)
body = np.array(body)
return body[:,:,::-1]
def get_image_prepare_material(image,face_box,upper_boundary_ratio = 0.5,expand=1.2):
body = Image.fromarray(image[:,:,::-1])
x, y, x1, y1 = face_box
#print(x1-x,y1-y)
crop_box, s = get_crop_box(face_box, expand)
x_s, y_s, x_e, y_e = crop_box
face_large = body.crop(crop_box)
ori_shape = face_large.size
mask_image = face_seg(face_large)
mask_small = mask_image.crop((x-x_s, y-y_s, x1-x_s, y1-y_s))
mask_image = Image.new('L', ori_shape, 0)
mask_image.paste(mask_small, (x-x_s, y-y_s, x1-x_s, y1-y_s))
# keep upper_boundary_ratio of talking area
width, height = mask_image.size
top_boundary = int(height * upper_boundary_ratio)
modified_mask_image = Image.new('L', ori_shape, 0)
modified_mask_image.paste(mask_image.crop((0, top_boundary, width, height)), (0, top_boundary))
blur_kernel_size = int(0.1 * ori_shape[0] // 2 * 2) + 1
mask_array = cv2.GaussianBlur(np.array(modified_mask_image), (blur_kernel_size, blur_kernel_size), 0)
return mask_array,crop_box
def get_image_blending(image,face,face_box,mask_array,crop_box):
body = Image.fromarray(image[:,:,::-1])
face = Image.fromarray(face[:,:,::-1])
x, y, x1, y1 = face_box
x_s, y_s, x_e, y_e = crop_box
face_large = body.crop(crop_box)
mask_image = Image.fromarray(mask_array)
mask_image = mask_image.convert("L")
face_large.paste(face, (x-x_s, y-y_s, x1-x_s, y1-y_s))
body.paste(face_large, crop_box[:2], mask_image)
body = np.array(body)
return body[:,:,::-1]

View File

@ -0,0 +1,54 @@
default_scope = 'mmpose'
# hooks
default_hooks = dict(
timer=dict(type='IterTimerHook'),
logger=dict(type='LoggerHook', interval=50),
param_scheduler=dict(type='ParamSchedulerHook'),
checkpoint=dict(type='CheckpointHook', interval=10),
sampler_seed=dict(type='DistSamplerSeedHook'),
visualization=dict(type='PoseVisualizationHook', enable=False),
badcase=dict(
type='BadCaseAnalysisHook',
enable=False,
out_dir='badcase',
metric_type='loss',
badcase_thr=5))
# custom hooks
custom_hooks = [
# Synchronize model buffers such as running_mean and running_var in BN
# at the end of each epoch
dict(type='SyncBuffersHook')
]
# multi-processing backend
env_cfg = dict(
cudnn_benchmark=False,
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
dist_cfg=dict(backend='nccl'),
)
# visualizer
vis_backends = [
dict(type='LocalVisBackend'),
# dict(type='TensorboardVisBackend'),
# dict(type='WandbVisBackend'),
]
visualizer = dict(
type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
# logger
log_processor = dict(
type='LogProcessor', window_size=50, by_epoch=True, num_digits=6)
log_level = 'INFO'
load_from = None
resume = False
# file I/O backend
backend_args = dict(backend='local')
# training/validation/testing progress
train_cfg = dict(by_epoch=True)
val_cfg = dict()
test_cfg = dict()

View File

@ -0,0 +1,257 @@
#_base_ = ['../../../_base_/default_runtime.py']
_base_ = ['default_runtime.py']
# runtime
max_epochs = 270
stage2_num_epochs = 30
base_lr = 4e-3
train_batch_size = 32
val_batch_size = 32
train_cfg = dict(max_epochs=max_epochs, val_interval=10)
randomness = dict(seed=21)
# optimizer
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(type='AdamW', lr=base_lr, weight_decay=0.05),
paramwise_cfg=dict(
norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True))
# learning rate
param_scheduler = [
dict(
type='LinearLR',
start_factor=1.0e-5,
by_epoch=False,
begin=0,
end=1000),
dict(
# use cosine lr from 150 to 300 epoch
type='CosineAnnealingLR',
eta_min=base_lr * 0.05,
begin=max_epochs // 2,
end=max_epochs,
T_max=max_epochs // 2,
by_epoch=True,
convert_to_iter_based=True),
]
# automatically scaling LR based on the actual training batch size
auto_scale_lr = dict(base_batch_size=512)
# codec settings
codec = dict(
type='SimCCLabel',
input_size=(288, 384),
sigma=(6., 6.93),
simcc_split_ratio=2.0,
normalize=False,
use_dark=False)
# model settings
model = dict(
type='TopdownPoseEstimator',
data_preprocessor=dict(
type='PoseDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True),
backbone=dict(
_scope_='mmdet',
type='CSPNeXt',
arch='P5',
expand_ratio=0.5,
deepen_factor=1.,
widen_factor=1.,
out_indices=(4, ),
channel_attention=True,
norm_cfg=dict(type='SyncBN'),
act_cfg=dict(type='SiLU'),
init_cfg=dict(
type='Pretrained',
prefix='backbone.',
checkpoint='https://download.openmmlab.com/mmpose/v1/projects/'
'rtmpose/cspnext-l_udp-aic-coco_210e-256x192-273b7631_20230130.pth' # noqa: E501
)),
head=dict(
type='RTMCCHead',
in_channels=1024,
out_channels=133,
input_size=codec['input_size'],
in_featuremap_size=(9, 12),
simcc_split_ratio=codec['simcc_split_ratio'],
final_layer_kernel_size=7,
gau_cfg=dict(
hidden_dims=256,
s=128,
expansion_factor=2,
dropout_rate=0.,
drop_path=0.,
act_fn='SiLU',
use_rel_bias=False,
pos_enc=False),
loss=dict(
type='KLDiscretLoss',
use_target_weight=True,
beta=10.,
label_softmax=True),
decoder=codec),
test_cfg=dict(flip_test=True, ))
# base dataset settings
dataset_type = 'UBody2dDataset'
data_mode = 'topdown'
data_root = 'data/UBody/'
backend_args = dict(backend='local')
scenes = [
'Magic_show', 'Entertainment', 'ConductMusic', 'Online_class', 'TalkShow',
'Speech', 'Fitness', 'Interview', 'Olympic', 'TVShow', 'Singing',
'SignLanguage', 'Movie', 'LiveVlog', 'VideoConference'
]
train_datasets = [
dict(
type='CocoWholeBodyDataset',
data_root='data/coco/',
data_mode=data_mode,
ann_file='annotations/coco_wholebody_train_v1.0.json',
data_prefix=dict(img='train2017/'),
pipeline=[])
]
for scene in scenes:
train_dataset = dict(
type=dataset_type,
data_root=data_root,
data_mode=data_mode,
ann_file=f'annotations/{scene}/train_annotations.json',
data_prefix=dict(img='images/'),
pipeline=[],
sample_interval=10)
train_datasets.append(train_dataset)
# pipelines
train_pipeline = [
dict(type='LoadImage', backend_args=backend_args),
dict(type='GetBBoxCenterScale'),
dict(type='RandomFlip', direction='horizontal'),
dict(type='RandomHalfBody'),
dict(
type='RandomBBoxTransform', scale_factor=[0.5, 1.5], rotate_factor=90),
dict(type='TopdownAffine', input_size=codec['input_size']),
dict(type='mmdet.YOLOXHSVRandomAug'),
dict(
type='Albumentation',
transforms=[
dict(type='Blur', p=0.1),
dict(type='MedianBlur', p=0.1),
dict(
type='CoarseDropout',
max_holes=1,
max_height=0.4,
max_width=0.4,
min_holes=1,
min_height=0.2,
min_width=0.2,
p=1.0),
]),
dict(type='GenerateTarget', encoder=codec),
dict(type='PackPoseInputs')
]
val_pipeline = [
dict(type='LoadImage', backend_args=backend_args),
dict(type='GetBBoxCenterScale'),
dict(type='TopdownAffine', input_size=codec['input_size']),
dict(type='PackPoseInputs')
]
train_pipeline_stage2 = [
dict(type='LoadImage', backend_args=backend_args),
dict(type='GetBBoxCenterScale'),
dict(type='RandomFlip', direction='horizontal'),
dict(type='RandomHalfBody'),
dict(
type='RandomBBoxTransform',
shift_factor=0.,
scale_factor=[0.5, 1.5],
rotate_factor=90),
dict(type='TopdownAffine', input_size=codec['input_size']),
dict(type='mmdet.YOLOXHSVRandomAug'),
dict(
type='Albumentation',
transforms=[
dict(type='Blur', p=0.1),
dict(type='MedianBlur', p=0.1),
dict(
type='CoarseDropout',
max_holes=1,
max_height=0.4,
max_width=0.4,
min_holes=1,
min_height=0.2,
min_width=0.2,
p=0.5),
]),
dict(type='GenerateTarget', encoder=codec),
dict(type='PackPoseInputs')
]
# data loaders
train_dataloader = dict(
batch_size=train_batch_size,
num_workers=10,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type='CombinedDataset',
metainfo=dict(from_file='configs/_base_/datasets/coco_wholebody.py'),
datasets=train_datasets,
pipeline=train_pipeline,
test_mode=False,
))
val_dataloader = dict(
batch_size=val_batch_size,
num_workers=10,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False, round_up=False),
dataset=dict(
type='CocoWholeBodyDataset',
data_root=data_root,
data_mode=data_mode,
ann_file='data/coco/annotations/coco_wholebody_val_v1.0.json',
bbox_file='data/coco/person_detection_results/'
'COCO_val2017_detections_AP_H_56_person.json',
data_prefix=dict(img='coco/val2017/'),
test_mode=True,
pipeline=val_pipeline,
))
test_dataloader = val_dataloader
# hooks
default_hooks = dict(
checkpoint=dict(
save_best='coco-wholebody/AP', rule='greater', max_keep_ckpts=1))
custom_hooks = [
dict(
type='EMAHook',
ema_type='ExpMomentumEMA',
momentum=0.0002,
update_buffers=True,
priority=49),
dict(
type='mmdet.PipelineSwitchHook',
switch_epoch=max_epochs - stage2_num_epochs,
switch_pipeline=train_pipeline_stage2)
]
# evaluators
val_evaluator = dict(
type='CocoWholeBodyMetric',
ann_file='data/coco/annotations/coco_wholebody_val_v1.0.json')
test_evaluator = val_evaluator

View File

@ -0,0 +1 @@
The code for Face Detection in this folder has been taken from the wonderful [face_alignment](https://github.com/1adrianb/face-alignment) repository. This has been modified to take batches of faces at a time.

View File

@ -0,0 +1,7 @@
# -*- coding: utf-8 -*-
__author__ = """Adrian Bulat"""
__email__ = 'adrian.bulat@nottingham.ac.uk'
__version__ = '1.0.1'
from .api import FaceAlignment, LandmarksType, NetworkSize, YOLOv8_face

View File

@ -0,0 +1,240 @@
from __future__ import print_function
import os
import torch
from torch.utils.model_zoo import load_url
from enum import Enum
import numpy as np
import cv2
try:
import urllib.request as request_file
except BaseException:
import urllib as request_file
from .models import FAN, ResNetDepth
from .utils import *
class LandmarksType(Enum):
"""Enum class defining the type of landmarks to detect.
``_2D`` - the detected points ``(x,y)`` are detected in a 2D space and follow the visible contour of the face
``_2halfD`` - this points represent the projection of the 3D points into 3D
``_3D`` - detect the points ``(x,y,z)``` in a 3D space
"""
_2D = 1
_2halfD = 2
_3D = 3
class NetworkSize(Enum):
# TINY = 1
# SMALL = 2
# MEDIUM = 3
LARGE = 4
def __new__(cls, value):
member = object.__new__(cls)
member._value_ = value
return member
def __int__(self):
return self.value
class FaceAlignment:
def __init__(self, landmarks_type, network_size=NetworkSize.LARGE,
device='cuda', flip_input=False, face_detector='sfd', verbose=False):
self.device = device
self.flip_input = flip_input
self.landmarks_type = landmarks_type
self.verbose = verbose
network_size = int(network_size)
if 'cuda' in device:
torch.backends.cudnn.benchmark = True
# torch.backends.cuda.matmul.allow_tf32 = False
# torch.backends.cudnn.benchmark = True
# torch.backends.cudnn.deterministic = False
# torch.backends.cudnn.allow_tf32 = True
print('cuda start')
# Get the face detector
face_detector_module = __import__('face_detection.detection.' + face_detector,
globals(), locals(), [face_detector], 0)
self.face_detector = face_detector_module.FaceDetector(device=device, verbose=verbose)
def get_detections_for_batch(self, images):
images = images[..., ::-1]
detected_faces = self.face_detector.detect_from_batch(images.copy())
results = []
for i, d in enumerate(detected_faces):
if len(d) == 0:
results.append(None)
continue
d = d[0]
d = np.clip(d, 0, None)
x1, y1, x2, y2 = map(int, d[:-1])
results.append((x1, y1, x2, y2))
return results
class YOLOv8_face:
def __init__(self, path = 'face_detection/weights/yolov8n-face.onnx', conf_thres=0.2, iou_thres=0.5):
self.conf_threshold = conf_thres
self.iou_threshold = iou_thres
self.class_names = ['face']
self.num_classes = len(self.class_names)
# Initialize model
self.net = cv2.dnn.readNet(path)
self.input_height = 640
self.input_width = 640
self.reg_max = 16
self.project = np.arange(self.reg_max)
self.strides = (8, 16, 32)
self.feats_hw = [(math.ceil(self.input_height / self.strides[i]), math.ceil(self.input_width / self.strides[i])) for i in range(len(self.strides))]
self.anchors = self.make_anchors(self.feats_hw)
def make_anchors(self, feats_hw, grid_cell_offset=0.5):
"""Generate anchors from features."""
anchor_points = {}
for i, stride in enumerate(self.strides):
h,w = feats_hw[i]
x = np.arange(0, w) + grid_cell_offset # shift x
y = np.arange(0, h) + grid_cell_offset # shift y
sx, sy = np.meshgrid(x, y)
# sy, sx = np.meshgrid(y, x)
anchor_points[stride] = np.stack((sx, sy), axis=-1).reshape(-1, 2)
return anchor_points
def softmax(self, x, axis=1):
x_exp = np.exp(x)
# 如果是列向量则axis=0
x_sum = np.sum(x_exp, axis=axis, keepdims=True)
s = x_exp / x_sum
return s
def resize_image(self, srcimg, keep_ratio=True):
top, left, newh, neww = 0, 0, self.input_width, self.input_height
if keep_ratio and srcimg.shape[0] != srcimg.shape[1]:
hw_scale = srcimg.shape[0] / srcimg.shape[1]
if hw_scale > 1:
newh, neww = self.input_height, int(self.input_width / hw_scale)
img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA)
left = int((self.input_width - neww) * 0.5)
img = cv2.copyMakeBorder(img, 0, 0, left, self.input_width - neww - left, cv2.BORDER_CONSTANT,
value=(0, 0, 0)) # add border
else:
newh, neww = int(self.input_height * hw_scale), self.input_width
img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA)
top = int((self.input_height - newh) * 0.5)
img = cv2.copyMakeBorder(img, top, self.input_height - newh - top, 0, 0, cv2.BORDER_CONSTANT,
value=(0, 0, 0))
else:
img = cv2.resize(srcimg, (self.input_width, self.input_height), interpolation=cv2.INTER_AREA)
return img, newh, neww, top, left
def detect(self, srcimg):
input_img, newh, neww, padh, padw = self.resize_image(cv2.cvtColor(srcimg, cv2.COLOR_BGR2RGB))
scale_h, scale_w = srcimg.shape[0]/newh, srcimg.shape[1]/neww
input_img = input_img.astype(np.float32) / 255.0
blob = cv2.dnn.blobFromImage(input_img)
self.net.setInput(blob)
outputs = self.net.forward(self.net.getUnconnectedOutLayersNames())
# if isinstance(outputs, tuple):
# outputs = list(outputs)
# if float(cv2.__version__[:3])>=4.7:
# outputs = [outputs[2], outputs[0], outputs[1]] ###opencv4.7需要这一步opencv4.5不需要
# Perform inference on the image
det_bboxes, det_conf, det_classid, landmarks = self.post_process(outputs, scale_h, scale_w, padh, padw)
return det_bboxes, det_conf, det_classid, landmarks
def post_process(self, preds, scale_h, scale_w, padh, padw):
bboxes, scores, landmarks = [], [], []
for i, pred in enumerate(preds):
stride = int(self.input_height/pred.shape[2])
pred = pred.transpose((0, 2, 3, 1))
box = pred[..., :self.reg_max * 4]
cls = 1 / (1 + np.exp(-pred[..., self.reg_max * 4:-15])).reshape((-1,1))
kpts = pred[..., -15:].reshape((-1,15)) ### x1,y1,score1, ..., x5,y5,score5
# tmp = box.reshape(self.feats_hw[i][0], self.feats_hw[i][1], 4, self.reg_max)
tmp = box.reshape(-1, 4, self.reg_max)
bbox_pred = self.softmax(tmp, axis=-1)
bbox_pred = np.dot(bbox_pred, self.project).reshape((-1,4))
bbox = self.distance2bbox(self.anchors[stride], bbox_pred, max_shape=(self.input_height, self.input_width)) * stride
kpts[:, 0::3] = (kpts[:, 0::3] * 2.0 + (self.anchors[stride][:, 0].reshape((-1,1)) - 0.5)) * stride
kpts[:, 1::3] = (kpts[:, 1::3] * 2.0 + (self.anchors[stride][:, 1].reshape((-1,1)) - 0.5)) * stride
kpts[:, 2::3] = 1 / (1+np.exp(-kpts[:, 2::3]))
bbox -= np.array([[padw, padh, padw, padh]]) ###合理使用广播法则
bbox *= np.array([[scale_w, scale_h, scale_w, scale_h]])
kpts -= np.tile(np.array([padw, padh, 0]), 5).reshape((1,15))
kpts *= np.tile(np.array([scale_w, scale_h, 1]), 5).reshape((1,15))
bboxes.append(bbox)
scores.append(cls)
landmarks.append(kpts)
bboxes = np.concatenate(bboxes, axis=0)
scores = np.concatenate(scores, axis=0)
landmarks = np.concatenate(landmarks, axis=0)
bboxes_wh = bboxes.copy()
bboxes_wh[:, 2:4] = bboxes[:, 2:4] - bboxes[:, 0:2] ####xywh
classIds = np.argmax(scores, axis=1)
confidences = np.max(scores, axis=1) ####max_class_confidence
mask = confidences>self.conf_threshold
bboxes_wh = bboxes_wh[mask] ###合理使用广播法则
confidences = confidences[mask]
classIds = classIds[mask]
landmarks = landmarks[mask]
indices = cv2.dnn.NMSBoxes(bboxes_wh.tolist(), confidences.tolist(), self.conf_threshold,
self.iou_threshold).flatten()
if len(indices) > 0:
mlvl_bboxes = bboxes_wh[indices]
confidences = confidences[indices]
classIds = classIds[indices]
landmarks = landmarks[indices]
return mlvl_bboxes, confidences, classIds, landmarks
else:
print('nothing detect')
return np.array([]), np.array([]), np.array([]), np.array([])
def distance2bbox(self, points, distance, max_shape=None):
x1 = points[:, 0] - distance[:, 0]
y1 = points[:, 1] - distance[:, 1]
x2 = points[:, 0] + distance[:, 2]
y2 = points[:, 1] + distance[:, 3]
if max_shape is not None:
x1 = np.clip(x1, 0, max_shape[1])
y1 = np.clip(y1, 0, max_shape[0])
x2 = np.clip(x2, 0, max_shape[1])
y2 = np.clip(y2, 0, max_shape[0])
return np.stack([x1, y1, x2, y2], axis=-1)
def draw_detections(self, image, boxes, scores, kpts):
for box, score, kp in zip(boxes, scores, kpts):
x, y, w, h = box.astype(int)
# Draw rectangle
cv2.rectangle(image, (x, y), (x + w, y + h), (0, 0, 255), thickness=3)
cv2.putText(image, "face:"+str(round(score,2)), (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), thickness=2)
for i in range(5):
cv2.circle(image, (int(kp[i * 3]), int(kp[i * 3 + 1])), 4, (0, 255, 0), thickness=-1)
# cv2.putText(image, str(i), (int(kp[i * 3]), int(kp[i * 3 + 1]) - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), thickness=1)
return image
ROOT = os.path.dirname(os.path.abspath(__file__))

View File

@ -0,0 +1 @@
from .core import FaceDetector

View File

@ -0,0 +1,130 @@
import logging
import glob
from tqdm import tqdm
import numpy as np
import torch
import cv2
class FaceDetector(object):
"""An abstract class representing a face detector.
Any other face detection implementation must subclass it. All subclasses
must implement ``detect_from_image``, that return a list of detected
bounding boxes. Optionally, for speed considerations detect from path is
recommended.
"""
def __init__(self, device, verbose):
self.device = device
self.verbose = verbose
if verbose:
if 'cpu' in device:
logger = logging.getLogger(__name__)
logger.warning("Detection running on CPU, this may be potentially slow.")
if 'cpu' not in device and 'cuda' not in device:
if verbose:
logger.error("Expected values for device are: {cpu, cuda} but got: %s", device)
raise ValueError
def detect_from_image(self, tensor_or_path):
"""Detects faces in a given image.
This function detects the faces present in a provided BGR(usually)
image. The input can be either the image itself or the path to it.
Arguments:
tensor_or_path {numpy.ndarray, torch.tensor or string} -- the path
to an image or the image itself.
Example::
>>> path_to_image = 'data/image_01.jpg'
... detected_faces = detect_from_image(path_to_image)
[A list of bounding boxes (x1, y1, x2, y2)]
>>> image = cv2.imread(path_to_image)
... detected_faces = detect_from_image(image)
[A list of bounding boxes (x1, y1, x2, y2)]
"""
raise NotImplementedError
def detect_from_directory(self, path, extensions=['.jpg', '.png'], recursive=False, show_progress_bar=True):
"""Detects faces from all the images present in a given directory.
Arguments:
path {string} -- a string containing a path that points to the folder containing the images
Keyword Arguments:
extensions {list} -- list of string containing the extensions to be
consider in the following format: ``.extension_name`` (default:
{['.jpg', '.png']}) recursive {bool} -- option wherever to scan the
folder recursively (default: {False}) show_progress_bar {bool} --
display a progressbar (default: {True})
Example:
>>> directory = 'data'
... detected_faces = detect_from_directory(directory)
{A dictionary of [lists containing bounding boxes(x1, y1, x2, y2)]}
"""
if self.verbose:
logger = logging.getLogger(__name__)
if len(extensions) == 0:
if self.verbose:
logger.error("Expected at list one extension, but none was received.")
raise ValueError
if self.verbose:
logger.info("Constructing the list of images.")
additional_pattern = '/**/*' if recursive else '/*'
files = []
for extension in extensions:
files.extend(glob.glob(path + additional_pattern + extension, recursive=recursive))
if self.verbose:
logger.info("Finished searching for images. %s images found", len(files))
logger.info("Preparing to run the detection.")
predictions = {}
for image_path in tqdm(files, disable=not show_progress_bar):
if self.verbose:
logger.info("Running the face detector on image: %s", image_path)
predictions[image_path] = self.detect_from_image(image_path)
if self.verbose:
logger.info("The detector was successfully run on all %s images", len(files))
return predictions
@property
def reference_scale(self):
raise NotImplementedError
@property
def reference_x_shift(self):
raise NotImplementedError
@property
def reference_y_shift(self):
raise NotImplementedError
@staticmethod
def tensor_or_path_to_ndarray(tensor_or_path, rgb=True):
"""Convert path (represented as a string) or torch.tensor to a numpy.ndarray
Arguments:
tensor_or_path {numpy.ndarray, torch.tensor or string} -- path to the image, or the image itself
"""
if isinstance(tensor_or_path, str):
return cv2.imread(tensor_or_path) if not rgb else cv2.imread(tensor_or_path)[..., ::-1]
elif torch.is_tensor(tensor_or_path):
# Call cpu in case its coming from cuda
return tensor_or_path.cpu().numpy()[..., ::-1].copy() if not rgb else tensor_or_path.cpu().numpy()
elif isinstance(tensor_or_path, np.ndarray):
return tensor_or_path[..., ::-1].copy() if not rgb else tensor_or_path
else:
raise TypeError

View File

@ -0,0 +1 @@
from .sfd_detector import SFDDetector as FaceDetector

View File

@ -0,0 +1,129 @@
from __future__ import print_function
import os
import sys
import cv2
import random
import datetime
import time
import math
import argparse
import numpy as np
import torch
try:
from iou import IOU
except BaseException:
# IOU cython speedup 10x
def IOU(ax1, ay1, ax2, ay2, bx1, by1, bx2, by2):
sa = abs((ax2 - ax1) * (ay2 - ay1))
sb = abs((bx2 - bx1) * (by2 - by1))
x1, y1 = max(ax1, bx1), max(ay1, by1)
x2, y2 = min(ax2, bx2), min(ay2, by2)
w = x2 - x1
h = y2 - y1
if w < 0 or h < 0:
return 0.0
else:
return 1.0 * w * h / (sa + sb - w * h)
def bboxlog(x1, y1, x2, y2, axc, ayc, aww, ahh):
xc, yc, ww, hh = (x2 + x1) / 2, (y2 + y1) / 2, x2 - x1, y2 - y1
dx, dy = (xc - axc) / aww, (yc - ayc) / ahh
dw, dh = math.log(ww / aww), math.log(hh / ahh)
return dx, dy, dw, dh
def bboxloginv(dx, dy, dw, dh, axc, ayc, aww, ahh):
xc, yc = dx * aww + axc, dy * ahh + ayc
ww, hh = math.exp(dw) * aww, math.exp(dh) * ahh
x1, x2, y1, y2 = xc - ww / 2, xc + ww / 2, yc - hh / 2, yc + hh / 2
return x1, y1, x2, y2
def nms(dets, thresh):
if 0 == len(dets):
return []
x1, y1, x2, y2, scores = dets[:, 0], dets[:, 1], dets[:, 2], dets[:, 3], dets[:, 4]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1, yy1 = np.maximum(x1[i], x1[order[1:]]), np.maximum(y1[i], y1[order[1:]])
xx2, yy2 = np.minimum(x2[i], x2[order[1:]]), np.minimum(y2[i], y2[order[1:]])
w, h = np.maximum(0.0, xx2 - xx1 + 1), np.maximum(0.0, yy2 - yy1 + 1)
ovr = w * h / (areas[i] + areas[order[1:]] - w * h)
inds = np.where(ovr <= thresh)[0]
order = order[inds + 1]
return keep
def encode(matched, priors, variances):
"""Encode the variances from the priorbox layers into the ground truth boxes
we have matched (based on jaccard overlap) with the prior boxes.
Args:
matched: (tensor) Coords of ground truth for each prior in point-form
Shape: [num_priors, 4].
priors: (tensor) Prior boxes in center-offset form
Shape: [num_priors,4].
variances: (list[float]) Variances of priorboxes
Return:
encoded boxes (tensor), Shape: [num_priors, 4]
"""
# dist b/t match center and prior's center
g_cxcy = (matched[:, :2] + matched[:, 2:]) / 2 - priors[:, :2]
# encode variance
g_cxcy /= (variances[0] * priors[:, 2:])
# match wh / prior wh
g_wh = (matched[:, 2:] - matched[:, :2]) / priors[:, 2:]
g_wh = torch.log(g_wh) / variances[1]
# return target for smooth_l1_loss
return torch.cat([g_cxcy, g_wh], 1) # [num_priors,4]
def decode(loc, priors, variances):
"""Decode locations from predictions using priors to undo
the encoding we did for offset regression at train time.
Args:
loc (tensor): location predictions for loc layers,
Shape: [num_priors,4]
priors (tensor): Prior boxes in center-offset form.
Shape: [num_priors,4].
variances: (list[float]) Variances of priorboxes
Return:
decoded bounding box predictions
"""
boxes = torch.cat((
priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1)
boxes[:, :2] -= boxes[:, 2:] / 2
boxes[:, 2:] += boxes[:, :2]
return boxes
def batch_decode(loc, priors, variances):
"""Decode locations from predictions using priors to undo
the encoding we did for offset regression at train time.
Args:
loc (tensor): location predictions for loc layers,
Shape: [num_priors,4]
priors (tensor): Prior boxes in center-offset form.
Shape: [num_priors,4].
variances: (list[float]) Variances of priorboxes
Return:
decoded bounding box predictions
"""
boxes = torch.cat((
priors[:, :, :2] + loc[:, :, :2] * variances[0] * priors[:, :, 2:],
priors[:, :, 2:] * torch.exp(loc[:, :, 2:] * variances[1])), 2)
boxes[:, :, :2] -= boxes[:, :, 2:] / 2
boxes[:, :, 2:] += boxes[:, :, :2]
return boxes

View File

@ -0,0 +1,114 @@
import torch
import torch.nn.functional as F
import os
import sys
import cv2
import random
import datetime
import math
import argparse
import numpy as np
import scipy.io as sio
import zipfile
from .net_s3fd import s3fd
from .bbox import *
def detect(net, img, device):
img = img - np.array([104, 117, 123])
img = img.transpose(2, 0, 1)
img = img.reshape((1,) + img.shape)
if 'cuda' in device:
torch.backends.cudnn.benchmark = True
img = torch.from_numpy(img).float().to(device)
BB, CC, HH, WW = img.size()
with torch.no_grad():
olist = net(img)
bboxlist = []
for i in range(len(olist) // 2):
olist[i * 2] = F.softmax(olist[i * 2], dim=1)
olist = [oelem.data.cpu() for oelem in olist]
for i in range(len(olist) // 2):
ocls, oreg = olist[i * 2], olist[i * 2 + 1]
FB, FC, FH, FW = ocls.size() # feature map size
stride = 2**(i + 2) # 4,8,16,32,64,128
anchor = stride * 4
poss = zip(*np.where(ocls[:, 1, :, :] > 0.05))
for Iindex, hindex, windex in poss:
axc, ayc = stride / 2 + windex * stride, stride / 2 + hindex * stride
score = ocls[0, 1, hindex, windex]
loc = oreg[0, :, hindex, windex].contiguous().view(1, 4)
priors = torch.Tensor([[axc / 1.0, ayc / 1.0, stride * 4 / 1.0, stride * 4 / 1.0]])
variances = [0.1, 0.2]
box = decode(loc, priors, variances)
x1, y1, x2, y2 = box[0] * 1.0
# cv2.rectangle(imgshow,(int(x1),int(y1)),(int(x2),int(y2)),(0,0,255),1)
bboxlist.append([x1, y1, x2, y2, score])
bboxlist = np.array(bboxlist)
if 0 == len(bboxlist):
bboxlist = np.zeros((1, 5))
return bboxlist
def batch_detect(net, imgs, device):
imgs = imgs - np.array([104, 117, 123])
imgs = imgs.transpose(0, 3, 1, 2)
if 'cuda' in device:
torch.backends.cudnn.benchmark = True
imgs = torch.from_numpy(imgs).float().to(device)
BB, CC, HH, WW = imgs.size()
with torch.no_grad():
olist = net(imgs)
# print(olist)
bboxlist = []
for i in range(len(olist) // 2):
olist[i * 2] = F.softmax(olist[i * 2], dim=1)
olist = [oelem.cpu() for oelem in olist]
for i in range(len(olist) // 2):
ocls, oreg = olist[i * 2], olist[i * 2 + 1]
FB, FC, FH, FW = ocls.size() # feature map size
stride = 2**(i + 2) # 4,8,16,32,64,128
anchor = stride * 4
poss = zip(*np.where(ocls[:, 1, :, :] > 0.05))
for Iindex, hindex, windex in poss:
axc, ayc = stride / 2 + windex * stride, stride / 2 + hindex * stride
score = ocls[:, 1, hindex, windex]
loc = oreg[:, :, hindex, windex].contiguous().view(BB, 1, 4)
priors = torch.Tensor([[axc / 1.0, ayc / 1.0, stride * 4 / 1.0, stride * 4 / 1.0]]).view(1, 1, 4)
variances = [0.1, 0.2]
box = batch_decode(loc, priors, variances)
box = box[:, 0] * 1.0
# cv2.rectangle(imgshow,(int(x1),int(y1)),(int(x2),int(y2)),(0,0,255),1)
bboxlist.append(torch.cat([box, score.unsqueeze(1)], 1).cpu().numpy())
bboxlist = np.array(bboxlist)
if 0 == len(bboxlist):
bboxlist = np.zeros((1, BB, 5))
return bboxlist
def flip_detect(net, img, device):
img = cv2.flip(img, 1)
b = detect(net, img, device)
bboxlist = np.zeros(b.shape)
bboxlist[:, 0] = img.shape[1] - b[:, 2]
bboxlist[:, 1] = b[:, 1]
bboxlist[:, 2] = img.shape[1] - b[:, 0]
bboxlist[:, 3] = b[:, 3]
bboxlist[:, 4] = b[:, 4]
return bboxlist
def pts_to_bb(pts):
min_x, min_y = np.min(pts, axis=0)
max_x, max_y = np.max(pts, axis=0)
return np.array([min_x, min_y, max_x, max_y])

View File

@ -0,0 +1,129 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
class L2Norm(nn.Module):
def __init__(self, n_channels, scale=1.0):
super(L2Norm, self).__init__()
self.n_channels = n_channels
self.scale = scale
self.eps = 1e-10
self.weight = nn.Parameter(torch.Tensor(self.n_channels))
self.weight.data *= 0.0
self.weight.data += self.scale
def forward(self, x):
norm = x.pow(2).sum(dim=1, keepdim=True).sqrt() + self.eps
x = x / norm * self.weight.view(1, -1, 1, 1)
return x
class s3fd(nn.Module):
def __init__(self):
super(s3fd, self).__init__()
self.conv1_1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1)
self.conv2_1 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1)
self.conv3_1 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)
self.conv3_2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
self.conv3_3 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
self.conv4_1 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1)
self.conv4_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
self.conv4_3 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
self.conv5_1 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
self.conv5_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
self.conv5_3 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
self.fc6 = nn.Conv2d(512, 1024, kernel_size=3, stride=1, padding=3)
self.fc7 = nn.Conv2d(1024, 1024, kernel_size=1, stride=1, padding=0)
self.conv6_1 = nn.Conv2d(1024, 256, kernel_size=1, stride=1, padding=0)
self.conv6_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1)
self.conv7_1 = nn.Conv2d(512, 128, kernel_size=1, stride=1, padding=0)
self.conv7_2 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1)
self.conv3_3_norm = L2Norm(256, scale=10)
self.conv4_3_norm = L2Norm(512, scale=8)
self.conv5_3_norm = L2Norm(512, scale=5)
self.conv3_3_norm_mbox_conf = nn.Conv2d(256, 4, kernel_size=3, stride=1, padding=1)
self.conv3_3_norm_mbox_loc = nn.Conv2d(256, 4, kernel_size=3, stride=1, padding=1)
self.conv4_3_norm_mbox_conf = nn.Conv2d(512, 2, kernel_size=3, stride=1, padding=1)
self.conv4_3_norm_mbox_loc = nn.Conv2d(512, 4, kernel_size=3, stride=1, padding=1)
self.conv5_3_norm_mbox_conf = nn.Conv2d(512, 2, kernel_size=3, stride=1, padding=1)
self.conv5_3_norm_mbox_loc = nn.Conv2d(512, 4, kernel_size=3, stride=1, padding=1)
self.fc7_mbox_conf = nn.Conv2d(1024, 2, kernel_size=3, stride=1, padding=1)
self.fc7_mbox_loc = nn.Conv2d(1024, 4, kernel_size=3, stride=1, padding=1)
self.conv6_2_mbox_conf = nn.Conv2d(512, 2, kernel_size=3, stride=1, padding=1)
self.conv6_2_mbox_loc = nn.Conv2d(512, 4, kernel_size=3, stride=1, padding=1)
self.conv7_2_mbox_conf = nn.Conv2d(256, 2, kernel_size=3, stride=1, padding=1)
self.conv7_2_mbox_loc = nn.Conv2d(256, 4, kernel_size=3, stride=1, padding=1)
def forward(self, x):
h = F.relu(self.conv1_1(x))
h = F.relu(self.conv1_2(h))
h = F.max_pool2d(h, 2, 2)
h = F.relu(self.conv2_1(h))
h = F.relu(self.conv2_2(h))
h = F.max_pool2d(h, 2, 2)
h = F.relu(self.conv3_1(h))
h = F.relu(self.conv3_2(h))
h = F.relu(self.conv3_3(h))
f3_3 = h
h = F.max_pool2d(h, 2, 2)
h = F.relu(self.conv4_1(h))
h = F.relu(self.conv4_2(h))
h = F.relu(self.conv4_3(h))
f4_3 = h
h = F.max_pool2d(h, 2, 2)
h = F.relu(self.conv5_1(h))
h = F.relu(self.conv5_2(h))
h = F.relu(self.conv5_3(h))
f5_3 = h
h = F.max_pool2d(h, 2, 2)
h = F.relu(self.fc6(h))
h = F.relu(self.fc7(h))
ffc7 = h
h = F.relu(self.conv6_1(h))
h = F.relu(self.conv6_2(h))
f6_2 = h
h = F.relu(self.conv7_1(h))
h = F.relu(self.conv7_2(h))
f7_2 = h
f3_3 = self.conv3_3_norm(f3_3)
f4_3 = self.conv4_3_norm(f4_3)
f5_3 = self.conv5_3_norm(f5_3)
cls1 = self.conv3_3_norm_mbox_conf(f3_3)
reg1 = self.conv3_3_norm_mbox_loc(f3_3)
cls2 = self.conv4_3_norm_mbox_conf(f4_3)
reg2 = self.conv4_3_norm_mbox_loc(f4_3)
cls3 = self.conv5_3_norm_mbox_conf(f5_3)
reg3 = self.conv5_3_norm_mbox_loc(f5_3)
cls4 = self.fc7_mbox_conf(ffc7)
reg4 = self.fc7_mbox_loc(ffc7)
cls5 = self.conv6_2_mbox_conf(f6_2)
reg5 = self.conv6_2_mbox_loc(f6_2)
cls6 = self.conv7_2_mbox_conf(f7_2)
reg6 = self.conv7_2_mbox_loc(f7_2)
# max-out background label
chunk = torch.chunk(cls1, 4, 1)
bmax = torch.max(torch.max(chunk[0], chunk[1]), chunk[2])
cls1 = torch.cat([bmax, chunk[3]], dim=1)
return [cls1, reg1, cls2, reg2, cls3, reg3, cls4, reg4, cls5, reg5, cls6, reg6]

View File

@ -0,0 +1,59 @@
import os
import cv2
from torch.utils.model_zoo import load_url
from ..core import FaceDetector
from .net_s3fd import s3fd
from .bbox import *
from .detect import *
models_urls = {
's3fd': 'https://www.adrianbulat.com/downloads/python-fan/s3fd-619a316812.pth',
}
class SFDDetector(FaceDetector):
def __init__(self, device, path_to_detector=os.path.join(os.path.dirname(os.path.abspath(__file__)), 's3fd.pth'), verbose=False):
super(SFDDetector, self).__init__(device, verbose)
# Initialise the face detector
if not os.path.isfile(path_to_detector):
model_weights = load_url(models_urls['s3fd'])
else:
model_weights = torch.load(path_to_detector)
self.face_detector = s3fd()
self.face_detector.load_state_dict(model_weights)
self.face_detector.to(device)
self.face_detector.eval()
def detect_from_image(self, tensor_or_path):
image = self.tensor_or_path_to_ndarray(tensor_or_path)
bboxlist = detect(self.face_detector, image, device=self.device)
keep = nms(bboxlist, 0.3)
bboxlist = bboxlist[keep, :]
bboxlist = [x for x in bboxlist if x[-1] > 0.5]
return bboxlist
def detect_from_batch(self, images):
bboxlists = batch_detect(self.face_detector, images, device=self.device)
keeps = [nms(bboxlists[:, i, :], 0.3) for i in range(bboxlists.shape[1])]
bboxlists = [bboxlists[keep, i, :] for i, keep in enumerate(keeps)]
bboxlists = [[x for x in bboxlist if x[-1] > 0.5] for bboxlist in bboxlists]
return bboxlists
@property
def reference_scale(self):
return 195
@property
def reference_x_shift(self):
return 0
@property
def reference_y_shift(self):
return 0

View File

@ -0,0 +1,261 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
def conv3x3(in_planes, out_planes, strd=1, padding=1, bias=False):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3,
stride=strd, padding=padding, bias=bias)
class ConvBlock(nn.Module):
def __init__(self, in_planes, out_planes):
super(ConvBlock, self).__init__()
self.bn1 = nn.BatchNorm2d(in_planes)
self.conv1 = conv3x3(in_planes, int(out_planes / 2))
self.bn2 = nn.BatchNorm2d(int(out_planes / 2))
self.conv2 = conv3x3(int(out_planes / 2), int(out_planes / 4))
self.bn3 = nn.BatchNorm2d(int(out_planes / 4))
self.conv3 = conv3x3(int(out_planes / 4), int(out_planes / 4))
if in_planes != out_planes:
self.downsample = nn.Sequential(
nn.BatchNorm2d(in_planes),
nn.ReLU(True),
nn.Conv2d(in_planes, out_planes,
kernel_size=1, stride=1, bias=False),
)
else:
self.downsample = None
def forward(self, x):
residual = x
out1 = self.bn1(x)
out1 = F.relu(out1, True)
out1 = self.conv1(out1)
out2 = self.bn2(out1)
out2 = F.relu(out2, True)
out2 = self.conv2(out2)
out3 = self.bn3(out2)
out3 = F.relu(out3, True)
out3 = self.conv3(out3)
out3 = torch.cat((out1, out2, out3), 1)
if self.downsample is not None:
residual = self.downsample(residual)
out3 += residual
return out3
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class HourGlass(nn.Module):
def __init__(self, num_modules, depth, num_features):
super(HourGlass, self).__init__()
self.num_modules = num_modules
self.depth = depth
self.features = num_features
self._generate_network(self.depth)
def _generate_network(self, level):
self.add_module('b1_' + str(level), ConvBlock(self.features, self.features))
self.add_module('b2_' + str(level), ConvBlock(self.features, self.features))
if level > 1:
self._generate_network(level - 1)
else:
self.add_module('b2_plus_' + str(level), ConvBlock(self.features, self.features))
self.add_module('b3_' + str(level), ConvBlock(self.features, self.features))
def _forward(self, level, inp):
# Upper branch
up1 = inp
up1 = self._modules['b1_' + str(level)](up1)
# Lower branch
low1 = F.avg_pool2d(inp, 2, stride=2)
low1 = self._modules['b2_' + str(level)](low1)
if level > 1:
low2 = self._forward(level - 1, low1)
else:
low2 = low1
low2 = self._modules['b2_plus_' + str(level)](low2)
low3 = low2
low3 = self._modules['b3_' + str(level)](low3)
up2 = F.interpolate(low3, scale_factor=2, mode='nearest')
return up1 + up2
def forward(self, x):
return self._forward(self.depth, x)
class FAN(nn.Module):
def __init__(self, num_modules=1):
super(FAN, self).__init__()
self.num_modules = num_modules
# Base part
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)
self.bn1 = nn.BatchNorm2d(64)
self.conv2 = ConvBlock(64, 128)
self.conv3 = ConvBlock(128, 128)
self.conv4 = ConvBlock(128, 256)
# Stacking part
for hg_module in range(self.num_modules):
self.add_module('m' + str(hg_module), HourGlass(1, 4, 256))
self.add_module('top_m_' + str(hg_module), ConvBlock(256, 256))
self.add_module('conv_last' + str(hg_module),
nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0))
self.add_module('bn_end' + str(hg_module), nn.BatchNorm2d(256))
self.add_module('l' + str(hg_module), nn.Conv2d(256,
68, kernel_size=1, stride=1, padding=0))
if hg_module < self.num_modules - 1:
self.add_module(
'bl' + str(hg_module), nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0))
self.add_module('al' + str(hg_module), nn.Conv2d(68,
256, kernel_size=1, stride=1, padding=0))
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)), True)
x = F.avg_pool2d(self.conv2(x), 2, stride=2)
x = self.conv3(x)
x = self.conv4(x)
previous = x
outputs = []
for i in range(self.num_modules):
hg = self._modules['m' + str(i)](previous)
ll = hg
ll = self._modules['top_m_' + str(i)](ll)
ll = F.relu(self._modules['bn_end' + str(i)]
(self._modules['conv_last' + str(i)](ll)), True)
# Predict heatmaps
tmp_out = self._modules['l' + str(i)](ll)
outputs.append(tmp_out)
if i < self.num_modules - 1:
ll = self._modules['bl' + str(i)](ll)
tmp_out_ = self._modules['al' + str(i)](tmp_out)
previous = previous + ll + tmp_out_
return outputs
class ResNetDepth(nn.Module):
def __init__(self, block=Bottleneck, layers=[3, 8, 36, 3], num_classes=68):
self.inplanes = 64
super(ResNetDepth, self).__init__()
self.conv1 = nn.Conv2d(3 + 68, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AvgPool2d(7)
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x

View File

@ -0,0 +1,313 @@
from __future__ import print_function
import os
import sys
import time
import torch
import math
import numpy as np
import cv2
def _gaussian(
size=3, sigma=0.25, amplitude=1, normalize=False, width=None,
height=None, sigma_horz=None, sigma_vert=None, mean_horz=0.5,
mean_vert=0.5):
# handle some defaults
if width is None:
width = size
if height is None:
height = size
if sigma_horz is None:
sigma_horz = sigma
if sigma_vert is None:
sigma_vert = sigma
center_x = mean_horz * width + 0.5
center_y = mean_vert * height + 0.5
gauss = np.empty((height, width), dtype=np.float32)
# generate kernel
for i in range(height):
for j in range(width):
gauss[i][j] = amplitude * math.exp(-(math.pow((j + 1 - center_x) / (
sigma_horz * width), 2) / 2.0 + math.pow((i + 1 - center_y) / (sigma_vert * height), 2) / 2.0))
if normalize:
gauss = gauss / np.sum(gauss)
return gauss
def draw_gaussian(image, point, sigma):
# Check if the gaussian is inside
ul = [math.floor(point[0] - 3 * sigma), math.floor(point[1] - 3 * sigma)]
br = [math.floor(point[0] + 3 * sigma), math.floor(point[1] + 3 * sigma)]
if (ul[0] > image.shape[1] or ul[1] > image.shape[0] or br[0] < 1 or br[1] < 1):
return image
size = 6 * sigma + 1
g = _gaussian(size)
g_x = [int(max(1, -ul[0])), int(min(br[0], image.shape[1])) - int(max(1, ul[0])) + int(max(1, -ul[0]))]
g_y = [int(max(1, -ul[1])), int(min(br[1], image.shape[0])) - int(max(1, ul[1])) + int(max(1, -ul[1]))]
img_x = [int(max(1, ul[0])), int(min(br[0], image.shape[1]))]
img_y = [int(max(1, ul[1])), int(min(br[1], image.shape[0]))]
assert (g_x[0] > 0 and g_y[1] > 0)
image[img_y[0] - 1:img_y[1], img_x[0] - 1:img_x[1]
] = image[img_y[0] - 1:img_y[1], img_x[0] - 1:img_x[1]] + g[g_y[0] - 1:g_y[1], g_x[0] - 1:g_x[1]]
image[image > 1] = 1
return image
def transform(point, center, scale, resolution, invert=False):
"""Generate and affine transformation matrix.
Given a set of points, a center, a scale and a targer resolution, the
function generates and affine transformation matrix. If invert is ``True``
it will produce the inverse transformation.
Arguments:
point {torch.tensor} -- the input 2D point
center {torch.tensor or numpy.array} -- the center around which to perform the transformations
scale {float} -- the scale of the face/object
resolution {float} -- the output resolution
Keyword Arguments:
invert {bool} -- define wherever the function should produce the direct or the
inverse transformation matrix (default: {False})
"""
_pt = torch.ones(3)
_pt[0] = point[0]
_pt[1] = point[1]
h = 200.0 * scale
t = torch.eye(3)
t[0, 0] = resolution / h
t[1, 1] = resolution / h
t[0, 2] = resolution * (-center[0] / h + 0.5)
t[1, 2] = resolution * (-center[1] / h + 0.5)
if invert:
t = torch.inverse(t)
new_point = (torch.matmul(t, _pt))[0:2]
return new_point.int()
def crop(image, center, scale, resolution=256.0):
"""Center crops an image or set of heatmaps
Arguments:
image {numpy.array} -- an rgb image
center {numpy.array} -- the center of the object, usually the same as of the bounding box
scale {float} -- scale of the face
Keyword Arguments:
resolution {float} -- the size of the output cropped image (default: {256.0})
Returns:
[type] -- [description]
""" # Crop around the center point
""" Crops the image around the center. Input is expected to be an np.ndarray """
ul = transform([1, 1], center, scale, resolution, True)
br = transform([resolution, resolution], center, scale, resolution, True)
# pad = math.ceil(torch.norm((ul - br).float()) / 2.0 - (br[0] - ul[0]) / 2.0)
if image.ndim > 2:
newDim = np.array([br[1] - ul[1], br[0] - ul[0],
image.shape[2]], dtype=np.int32)
newImg = np.zeros(newDim, dtype=np.uint8)
else:
newDim = np.array([br[1] - ul[1], br[0] - ul[0]], dtype=np.int)
newImg = np.zeros(newDim, dtype=np.uint8)
ht = image.shape[0]
wd = image.shape[1]
newX = np.array(
[max(1, -ul[0] + 1), min(br[0], wd) - ul[0]], dtype=np.int32)
newY = np.array(
[max(1, -ul[1] + 1), min(br[1], ht) - ul[1]], dtype=np.int32)
oldX = np.array([max(1, ul[0] + 1), min(br[0], wd)], dtype=np.int32)
oldY = np.array([max(1, ul[1] + 1), min(br[1], ht)], dtype=np.int32)
newImg[newY[0] - 1:newY[1], newX[0] - 1:newX[1]
] = image[oldY[0] - 1:oldY[1], oldX[0] - 1:oldX[1], :]
newImg = cv2.resize(newImg, dsize=(int(resolution), int(resolution)),
interpolation=cv2.INTER_LINEAR)
return newImg
def get_preds_fromhm(hm, center=None, scale=None):
"""Obtain (x,y) coordinates given a set of N heatmaps. If the center
and the scale is provided the function will return the points also in
the original coordinate frame.
Arguments:
hm {torch.tensor} -- the predicted heatmaps, of shape [B, N, W, H]
Keyword Arguments:
center {torch.tensor} -- the center of the bounding box (default: {None})
scale {float} -- face scale (default: {None})
"""
max, idx = torch.max(
hm.view(hm.size(0), hm.size(1), hm.size(2) * hm.size(3)), 2)
idx += 1
preds = idx.view(idx.size(0), idx.size(1), 1).repeat(1, 1, 2).float()
preds[..., 0].apply_(lambda x: (x - 1) % hm.size(3) + 1)
preds[..., 1].add_(-1).div_(hm.size(2)).floor_().add_(1)
for i in range(preds.size(0)):
for j in range(preds.size(1)):
hm_ = hm[i, j, :]
pX, pY = int(preds[i, j, 0]) - 1, int(preds[i, j, 1]) - 1
if pX > 0 and pX < 63 and pY > 0 and pY < 63:
diff = torch.FloatTensor(
[hm_[pY, pX + 1] - hm_[pY, pX - 1],
hm_[pY + 1, pX] - hm_[pY - 1, pX]])
preds[i, j].add_(diff.sign_().mul_(.25))
preds.add_(-.5)
preds_orig = torch.zeros(preds.size())
if center is not None and scale is not None:
for i in range(hm.size(0)):
for j in range(hm.size(1)):
preds_orig[i, j] = transform(
preds[i, j], center, scale, hm.size(2), True)
return preds, preds_orig
def get_preds_fromhm_batch(hm, centers=None, scales=None):
"""Obtain (x,y) coordinates given a set of N heatmaps. If the centers
and the scales is provided the function will return the points also in
the original coordinate frame.
Arguments:
hm {torch.tensor} -- the predicted heatmaps, of shape [B, N, W, H]
Keyword Arguments:
centers {torch.tensor} -- the centers of the bounding box (default: {None})
scales {float} -- face scales (default: {None})
"""
max, idx = torch.max(
hm.view(hm.size(0), hm.size(1), hm.size(2) * hm.size(3)), 2)
idx += 1
preds = idx.view(idx.size(0), idx.size(1), 1).repeat(1, 1, 2).float()
preds[..., 0].apply_(lambda x: (x - 1) % hm.size(3) + 1)
preds[..., 1].add_(-1).div_(hm.size(2)).floor_().add_(1)
for i in range(preds.size(0)):
for j in range(preds.size(1)):
hm_ = hm[i, j, :]
pX, pY = int(preds[i, j, 0]) - 1, int(preds[i, j, 1]) - 1
if pX > 0 and pX < 63 and pY > 0 and pY < 63:
diff = torch.FloatTensor(
[hm_[pY, pX + 1] - hm_[pY, pX - 1],
hm_[pY + 1, pX] - hm_[pY - 1, pX]])
preds[i, j].add_(diff.sign_().mul_(.25))
preds.add_(-.5)
preds_orig = torch.zeros(preds.size())
if centers is not None and scales is not None:
for i in range(hm.size(0)):
for j in range(hm.size(1)):
preds_orig[i, j] = transform(
preds[i, j], centers[i], scales[i], hm.size(2), True)
return preds, preds_orig
def shuffle_lr(parts, pairs=None):
"""Shuffle the points left-right according to the axis of symmetry
of the object.
Arguments:
parts {torch.tensor} -- a 3D or 4D object containing the
heatmaps.
Keyword Arguments:
pairs {list of integers} -- [order of the flipped points] (default: {None})
"""
if pairs is None:
pairs = [16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0,
26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 27, 28, 29, 30, 35,
34, 33, 32, 31, 45, 44, 43, 42, 47, 46, 39, 38, 37, 36, 41,
40, 54, 53, 52, 51, 50, 49, 48, 59, 58, 57, 56, 55, 64, 63,
62, 61, 60, 67, 66, 65]
if parts.ndimension() == 3:
parts = parts[pairs, ...]
else:
parts = parts[:, pairs, ...]
return parts
def flip(tensor, is_label=False):
"""Flip an image or a set of heatmaps left-right
Arguments:
tensor {numpy.array or torch.tensor} -- [the input image or heatmaps]
Keyword Arguments:
is_label {bool} -- [denote wherever the input is an image or a set of heatmaps ] (default: {False})
"""
if not torch.is_tensor(tensor):
tensor = torch.from_numpy(tensor)
if is_label:
tensor = shuffle_lr(tensor).flip(tensor.ndimension() - 1)
else:
tensor = tensor.flip(tensor.ndimension() - 1)
return tensor
# From pyzolib/paths.py (https://bitbucket.org/pyzo/pyzolib/src/tip/paths.py)
def appdata_dir(appname=None, roaming=False):
""" appdata_dir(appname=None, roaming=False)
Get the path to the application directory, where applications are allowed
to write user specific files (e.g. configurations). For non-user specific
data, consider using common_appdata_dir().
If appname is given, a subdir is appended (and created if necessary).
If roaming is True, will prefer a roaming directory (Windows Vista/7).
"""
# Define default user directory
userDir = os.getenv('FACEALIGNMENT_USERDIR', None)
if userDir is None:
userDir = os.path.expanduser('~')
if not os.path.isdir(userDir): # pragma: no cover
userDir = '/var/tmp' # issue #54
# Get system app data dir
path = None
if sys.platform.startswith('win'):
path1, path2 = os.getenv('LOCALAPPDATA'), os.getenv('APPDATA')
path = (path2 or path1) if roaming else (path1 or path2)
elif sys.platform.startswith('darwin'):
path = os.path.join(userDir, 'Library', 'Application Support')
# On Linux and as fallback
if not (path and os.path.isdir(path)):
path = userDir
# Maybe we should store things local to the executable (in case of a
# portable distro or a frozen application that wants to be portable)
prefix = sys.prefix
if getattr(sys, 'frozen', None):
prefix = os.path.abspath(os.path.dirname(sys.executable))
for reldir in ('settings', '../settings'):
localpath = os.path.abspath(os.path.join(prefix, reldir))
if os.path.isdir(localpath): # pragma: no cover
try:
open(os.path.join(localpath, 'test.write'), 'wb').close()
os.remove(os.path.join(localpath, 'test.write'))
except IOError:
pass # We cannot write in this directory
else:
path = localpath
break
# Get path specific for this app
if appname:
if path == userDir:
appname = '.' + appname.lstrip('.') # Make it a hidden directory
path = os.path.join(path, appname)
if not os.path.isdir(path): # pragma: no cover
os.mkdir(path)
# Done
return path

View File

@ -0,0 +1,56 @@
import torch
import time
import os
import cv2
import numpy as np
from PIL import Image
from .model import BiSeNet
import torchvision.transforms as transforms
class FaceParsing():
def __init__(self):
self.net = self.model_init()
self.preprocess = self.image_preprocess()
def model_init(self,
resnet_path='./models/face-parse-bisent/resnet18-5c106cde.pth',
model_pth='./models/face-parse-bisent/79999_iter.pth'):
net = BiSeNet(resnet_path)
if torch.cuda.is_available():
net.cuda()
net.load_state_dict(torch.load(model_pth))
else:
net.load_state_dict(torch.load(model_pth, map_location=torch.device('cpu')))
net.eval()
return net
def image_preprocess(self):
return transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])
def __call__(self, image, size=(512, 512)):
if isinstance(image, str):
image = Image.open(image)
width, height = image.size
with torch.no_grad():
image = image.resize(size, Image.BILINEAR)
img = self.preprocess(image)
if torch.cuda.is_available():
img = torch.unsqueeze(img, 0).cuda()
else:
img = torch.unsqueeze(img, 0)
out = self.net(img)[0]
parsing = out.squeeze(0).cpu().numpy().argmax(0)
parsing[np.where(parsing>13)] = 0
parsing[np.where(parsing>=1)] = 255
parsing = Image.fromarray(parsing.astype(np.uint8))
return parsing
if __name__ == "__main__":
fp = FaceParsing()
segmap = fp('154_small.png')
segmap.save('res.png')

View File

@ -0,0 +1,283 @@
#!/usr/bin/python
# -*- encoding: utf-8 -*-
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from .resnet import Resnet18
# from modules.bn import InPlaceABNSync as BatchNorm2d
class ConvBNReLU(nn.Module):
def __init__(self, in_chan, out_chan, ks=3, stride=1, padding=1, *args, **kwargs):
super(ConvBNReLU, self).__init__()
self.conv = nn.Conv2d(in_chan,
out_chan,
kernel_size = ks,
stride = stride,
padding = padding,
bias = False)
self.bn = nn.BatchNorm2d(out_chan)
self.init_weight()
def forward(self, x):
x = self.conv(x)
x = F.relu(self.bn(x))
return x
def init_weight(self):
for ly in self.children():
if isinstance(ly, nn.Conv2d):
nn.init.kaiming_normal_(ly.weight, a=1)
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
class BiSeNetOutput(nn.Module):
def __init__(self, in_chan, mid_chan, n_classes, *args, **kwargs):
super(BiSeNetOutput, self).__init__()
self.conv = ConvBNReLU(in_chan, mid_chan, ks=3, stride=1, padding=1)
self.conv_out = nn.Conv2d(mid_chan, n_classes, kernel_size=1, bias=False)
self.init_weight()
def forward(self, x):
x = self.conv(x)
x = self.conv_out(x)
return x
def init_weight(self):
for ly in self.children():
if isinstance(ly, nn.Conv2d):
nn.init.kaiming_normal_(ly.weight, a=1)
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
def get_params(self):
wd_params, nowd_params = [], []
for name, module in self.named_modules():
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d):
wd_params.append(module.weight)
if not module.bias is None:
nowd_params.append(module.bias)
elif isinstance(module, nn.BatchNorm2d):
nowd_params += list(module.parameters())
return wd_params, nowd_params
class AttentionRefinementModule(nn.Module):
def __init__(self, in_chan, out_chan, *args, **kwargs):
super(AttentionRefinementModule, self).__init__()
self.conv = ConvBNReLU(in_chan, out_chan, ks=3, stride=1, padding=1)
self.conv_atten = nn.Conv2d(out_chan, out_chan, kernel_size= 1, bias=False)
self.bn_atten = nn.BatchNorm2d(out_chan)
self.sigmoid_atten = nn.Sigmoid()
self.init_weight()
def forward(self, x):
feat = self.conv(x)
atten = F.avg_pool2d(feat, feat.size()[2:])
atten = self.conv_atten(atten)
atten = self.bn_atten(atten)
atten = self.sigmoid_atten(atten)
out = torch.mul(feat, atten)
return out
def init_weight(self):
for ly in self.children():
if isinstance(ly, nn.Conv2d):
nn.init.kaiming_normal_(ly.weight, a=1)
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
class ContextPath(nn.Module):
def __init__(self, resnet_path, *args, **kwargs):
super(ContextPath, self).__init__()
self.resnet = Resnet18(resnet_path)
self.arm16 = AttentionRefinementModule(256, 128)
self.arm32 = AttentionRefinementModule(512, 128)
self.conv_head32 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1)
self.conv_head16 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1)
self.conv_avg = ConvBNReLU(512, 128, ks=1, stride=1, padding=0)
self.init_weight()
def forward(self, x):
H0, W0 = x.size()[2:]
feat8, feat16, feat32 = self.resnet(x)
H8, W8 = feat8.size()[2:]
H16, W16 = feat16.size()[2:]
H32, W32 = feat32.size()[2:]
avg = F.avg_pool2d(feat32, feat32.size()[2:])
avg = self.conv_avg(avg)
avg_up = F.interpolate(avg, (H32, W32), mode='nearest')
feat32_arm = self.arm32(feat32)
feat32_sum = feat32_arm + avg_up
feat32_up = F.interpolate(feat32_sum, (H16, W16), mode='nearest')
feat32_up = self.conv_head32(feat32_up)
feat16_arm = self.arm16(feat16)
feat16_sum = feat16_arm + feat32_up
feat16_up = F.interpolate(feat16_sum, (H8, W8), mode='nearest')
feat16_up = self.conv_head16(feat16_up)
return feat8, feat16_up, feat32_up # x8, x8, x16
def init_weight(self):
for ly in self.children():
if isinstance(ly, nn.Conv2d):
nn.init.kaiming_normal_(ly.weight, a=1)
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
def get_params(self):
wd_params, nowd_params = [], []
for name, module in self.named_modules():
if isinstance(module, (nn.Linear, nn.Conv2d)):
wd_params.append(module.weight)
if not module.bias is None:
nowd_params.append(module.bias)
elif isinstance(module, nn.BatchNorm2d):
nowd_params += list(module.parameters())
return wd_params, nowd_params
### This is not used, since I replace this with the resnet feature with the same size
class SpatialPath(nn.Module):
def __init__(self, *args, **kwargs):
super(SpatialPath, self).__init__()
self.conv1 = ConvBNReLU(3, 64, ks=7, stride=2, padding=3)
self.conv2 = ConvBNReLU(64, 64, ks=3, stride=2, padding=1)
self.conv3 = ConvBNReLU(64, 64, ks=3, stride=2, padding=1)
self.conv_out = ConvBNReLU(64, 128, ks=1, stride=1, padding=0)
self.init_weight()
def forward(self, x):
feat = self.conv1(x)
feat = self.conv2(feat)
feat = self.conv3(feat)
feat = self.conv_out(feat)
return feat
def init_weight(self):
for ly in self.children():
if isinstance(ly, nn.Conv2d):
nn.init.kaiming_normal_(ly.weight, a=1)
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
def get_params(self):
wd_params, nowd_params = [], []
for name, module in self.named_modules():
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d):
wd_params.append(module.weight)
if not module.bias is None:
nowd_params.append(module.bias)
elif isinstance(module, nn.BatchNorm2d):
nowd_params += list(module.parameters())
return wd_params, nowd_params
class FeatureFusionModule(nn.Module):
def __init__(self, in_chan, out_chan, *args, **kwargs):
super(FeatureFusionModule, self).__init__()
self.convblk = ConvBNReLU(in_chan, out_chan, ks=1, stride=1, padding=0)
self.conv1 = nn.Conv2d(out_chan,
out_chan//4,
kernel_size = 1,
stride = 1,
padding = 0,
bias = False)
self.conv2 = nn.Conv2d(out_chan//4,
out_chan,
kernel_size = 1,
stride = 1,
padding = 0,
bias = False)
self.relu = nn.ReLU(inplace=True)
self.sigmoid = nn.Sigmoid()
self.init_weight()
def forward(self, fsp, fcp):
fcat = torch.cat([fsp, fcp], dim=1)
feat = self.convblk(fcat)
atten = F.avg_pool2d(feat, feat.size()[2:])
atten = self.conv1(atten)
atten = self.relu(atten)
atten = self.conv2(atten)
atten = self.sigmoid(atten)
feat_atten = torch.mul(feat, atten)
feat_out = feat_atten + feat
return feat_out
def init_weight(self):
for ly in self.children():
if isinstance(ly, nn.Conv2d):
nn.init.kaiming_normal_(ly.weight, a=1)
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
def get_params(self):
wd_params, nowd_params = [], []
for name, module in self.named_modules():
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d):
wd_params.append(module.weight)
if not module.bias is None:
nowd_params.append(module.bias)
elif isinstance(module, nn.BatchNorm2d):
nowd_params += list(module.parameters())
return wd_params, nowd_params
class BiSeNet(nn.Module):
def __init__(self, resnet_path='models/resnet18-5c106cde.pth', n_classes=19, *args, **kwargs):
super(BiSeNet, self).__init__()
self.cp = ContextPath(resnet_path)
## here self.sp is deleted
self.ffm = FeatureFusionModule(256, 256)
self.conv_out = BiSeNetOutput(256, 256, n_classes)
self.conv_out16 = BiSeNetOutput(128, 64, n_classes)
self.conv_out32 = BiSeNetOutput(128, 64, n_classes)
self.init_weight()
def forward(self, x):
H, W = x.size()[2:]
feat_res8, feat_cp8, feat_cp16 = self.cp(x) # here return res3b1 feature
feat_sp = feat_res8 # use res3b1 feature to replace spatial path feature
feat_fuse = self.ffm(feat_sp, feat_cp8)
feat_out = self.conv_out(feat_fuse)
feat_out16 = self.conv_out16(feat_cp8)
feat_out32 = self.conv_out32(feat_cp16)
feat_out = F.interpolate(feat_out, (H, W), mode='bilinear', align_corners=True)
feat_out16 = F.interpolate(feat_out16, (H, W), mode='bilinear', align_corners=True)
feat_out32 = F.interpolate(feat_out32, (H, W), mode='bilinear', align_corners=True)
return feat_out, feat_out16, feat_out32
def init_weight(self):
for ly in self.children():
if isinstance(ly, nn.Conv2d):
nn.init.kaiming_normal_(ly.weight, a=1)
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
def get_params(self):
wd_params, nowd_params, lr_mul_wd_params, lr_mul_nowd_params = [], [], [], []
for name, child in self.named_children():
child_wd_params, child_nowd_params = child.get_params()
if isinstance(child, FeatureFusionModule) or isinstance(child, BiSeNetOutput):
lr_mul_wd_params += child_wd_params
lr_mul_nowd_params += child_nowd_params
else:
wd_params += child_wd_params
nowd_params += child_nowd_params
return wd_params, nowd_params, lr_mul_wd_params, lr_mul_nowd_params
if __name__ == "__main__":
net = BiSeNet(19)
net.cuda()
net.eval()
in_ten = torch.randn(16, 3, 640, 480).cuda()
out, out16, out32 = net(in_ten)
print(out.shape)
net.get_params()

View File

@ -0,0 +1,109 @@
#!/usr/bin/python
# -*- encoding: utf-8 -*-
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.model_zoo as modelzoo
# from modules.bn import InPlaceABNSync as BatchNorm2d
resnet18_url = 'https://download.pytorch.org/models/resnet18-5c106cde.pth'
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class BasicBlock(nn.Module):
def __init__(self, in_chan, out_chan, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(in_chan, out_chan, stride)
self.bn1 = nn.BatchNorm2d(out_chan)
self.conv2 = conv3x3(out_chan, out_chan)
self.bn2 = nn.BatchNorm2d(out_chan)
self.relu = nn.ReLU(inplace=True)
self.downsample = None
if in_chan != out_chan or stride != 1:
self.downsample = nn.Sequential(
nn.Conv2d(in_chan, out_chan,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_chan),
)
def forward(self, x):
residual = self.conv1(x)
residual = F.relu(self.bn1(residual))
residual = self.conv2(residual)
residual = self.bn2(residual)
shortcut = x
if self.downsample is not None:
shortcut = self.downsample(x)
out = shortcut + residual
out = self.relu(out)
return out
def create_layer_basic(in_chan, out_chan, bnum, stride=1):
layers = [BasicBlock(in_chan, out_chan, stride=stride)]
for i in range(bnum-1):
layers.append(BasicBlock(out_chan, out_chan, stride=1))
return nn.Sequential(*layers)
class Resnet18(nn.Module):
def __init__(self, model_path):
super(Resnet18, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = create_layer_basic(64, 64, bnum=2, stride=1)
self.layer2 = create_layer_basic(64, 128, bnum=2, stride=2)
self.layer3 = create_layer_basic(128, 256, bnum=2, stride=2)
self.layer4 = create_layer_basic(256, 512, bnum=2, stride=2)
self.init_weight(model_path)
def forward(self, x):
x = self.conv1(x)
x = F.relu(self.bn1(x))
x = self.maxpool(x)
x = self.layer1(x)
feat8 = self.layer2(x) # 1/8
feat16 = self.layer3(feat8) # 1/16
feat32 = self.layer4(feat16) # 1/32
return feat8, feat16, feat32
def init_weight(self, model_path):
state_dict = torch.load(model_path) #modelzoo.load_url(resnet18_url)
self_state_dict = self.state_dict()
for k, v in state_dict.items():
if 'fc' in k: continue
self_state_dict.update({k: v})
self.load_state_dict(self_state_dict)
def get_params(self):
wd_params, nowd_params = [], []
for name, module in self.named_modules():
if isinstance(module, (nn.Linear, nn.Conv2d)):
wd_params.append(module.weight)
if not module.bias is None:
nowd_params.append(module.bias)
elif isinstance(module, nn.BatchNorm2d):
nowd_params += list(module.parameters())
return wd_params, nowd_params
if __name__ == "__main__":
net = Resnet18()
x = torch.randn(16, 3, 224, 224)
out = net(x)
print(out[0].size())
print(out[1].size())
print(out[2].size())
net.get_params()

View File

@ -0,0 +1,154 @@
import sys
from face_detection import FaceAlignment,LandmarksType
from os import listdir, path
import subprocess
import numpy as np
import cv2
import pickle
import os
import json
from mmpose.apis import inference_topdown, init_model
from mmpose.structures import merge_data_samples
import torch
from tqdm import tqdm
# initialize the mmpose model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
config_file = './musetalk/utils/dwpose/rtmpose-l_8xb32-270e_coco-ubody-wholebody-384x288.py'
checkpoint_file = './models/dwpose/dw-ll_ucoco_384.pth'
model = init_model(config_file, checkpoint_file, device=device)
# initialize the face detection model
device = "cuda" if torch.cuda.is_available() else "cpu"
fa = FaceAlignment(LandmarksType._2D, flip_input=False,device=device)
# maker if the bbox is not sufficient
coord_placeholder = (0.0,0.0,0.0,0.0)
def resize_landmark(landmark, w, h, new_w, new_h):
w_ratio = new_w / w
h_ratio = new_h / h
landmark_norm = landmark / [w, h]
landmark_resized = landmark_norm * [new_w, new_h]
return landmark_resized
def read_imgs(img_list):
frames = []
print('reading images...')
for img_path in tqdm(img_list):
frame = cv2.imread(img_path)
frames.append(frame)
return frames
def get_bbox_range(img_list,upperbondrange =0):
frames = read_imgs(img_list)
batch_size_fa = 1
batches = [frames[i:i + batch_size_fa] for i in range(0, len(frames), batch_size_fa)]
coords_list = []
landmarks = []
if upperbondrange != 0:
print('get key_landmark and face bounding boxes with the bbox_shift:',upperbondrange)
else:
print('get key_landmark and face bounding boxes with the default value')
average_range_minus = []
average_range_plus = []
for fb in tqdm(batches):
results = inference_topdown(model, np.asarray(fb)[0])
results = merge_data_samples(results)
keypoints = results.pred_instances.keypoints
face_land_mark= keypoints[0][23:91]
face_land_mark = face_land_mark.astype(np.int32)
# get bounding boxes by face detetion
bbox = fa.get_detections_for_batch(np.asarray(fb))
# adjust the bounding box refer to landmark
# Add the bounding box to a tuple and append it to the coordinates list
for j, f in enumerate(bbox):
if f is None: # no face in the image
coords_list += [coord_placeholder]
continue
half_face_coord = face_land_mark[29]#np.mean([face_land_mark[28], face_land_mark[29]], axis=0)
range_minus = (face_land_mark[30]- face_land_mark[29])[1]
range_plus = (face_land_mark[29]- face_land_mark[28])[1]
average_range_minus.append(range_minus)
average_range_plus.append(range_plus)
if upperbondrange != 0:
half_face_coord[1] = upperbondrange+half_face_coord[1] #手动调整 + 向下偏29 - 向上偏28
text_range=f"Total frame:「{len(frames)}」 Manually adjust range : [ -{int(sum(average_range_minus) / len(average_range_minus))}~{int(sum(average_range_plus) / len(average_range_plus))} ] , the current value: {upperbondrange}"
return text_range
def get_landmark_and_bbox(img_list,upperbondrange =0):
frames = read_imgs(img_list)
batch_size_fa = 1
batches = [frames[i:i + batch_size_fa] for i in range(0, len(frames), batch_size_fa)]
coords_list = []
landmarks = []
if upperbondrange != 0:
print('get key_landmark and face bounding boxes with the bbox_shift:',upperbondrange)
else:
print('get key_landmark and face bounding boxes with the default value')
average_range_minus = []
average_range_plus = []
for fb in tqdm(batches):
results = inference_topdown(model, np.asarray(fb)[0])
results = merge_data_samples(results)
keypoints = results.pred_instances.keypoints
face_land_mark= keypoints[0][23:91]
face_land_mark = face_land_mark.astype(np.int32)
# get bounding boxes by face detetion
bbox = fa.get_detections_for_batch(np.asarray(fb))
# adjust the bounding box refer to landmark
# Add the bounding box to a tuple and append it to the coordinates list
for j, f in enumerate(bbox):
if f is None: # no face in the image
coords_list += [coord_placeholder]
continue
half_face_coord = face_land_mark[29]#np.mean([face_land_mark[28], face_land_mark[29]], axis=0)
range_minus = (face_land_mark[30]- face_land_mark[29])[1]
range_plus = (face_land_mark[29]- face_land_mark[28])[1]
average_range_minus.append(range_minus)
average_range_plus.append(range_plus)
if upperbondrange != 0:
half_face_coord[1] = upperbondrange+half_face_coord[1] #手动调整 + 向下偏29 - 向上偏28
half_face_dist = np.max(face_land_mark[:,1]) - half_face_coord[1]
upper_bond = half_face_coord[1]-half_face_dist
f_landmark = (np.min(face_land_mark[:, 0]),int(upper_bond),np.max(face_land_mark[:, 0]),np.max(face_land_mark[:,1]))
x1, y1, x2, y2 = f_landmark
if y2-y1<=0 or x2-x1<=0 or x1<0: # if the landmark bbox is not suitable, reuse the bbox
coords_list += [f]
w,h = f[2]-f[0], f[3]-f[1]
print("error bbox:",f)
else:
coords_list += [f_landmark]
print("********************************************bbox_shift parameter adjustment**********************************************************")
print(f"Total frame:「{len(frames)}」 Manually adjust range : [ -{int(sum(average_range_minus) / len(average_range_minus))}~{int(sum(average_range_plus) / len(average_range_plus))} ] , the current value: {upperbondrange}")
print("*************************************************************************************************************************************")
return coords_list,frames
if __name__ == "__main__":
img_list = ["./results/lyria/00000.png","./results/lyria/00001.png","./results/lyria/00002.png","./results/lyria/00003.png"]
crop_coord_path = "./coord_face.pkl"
coords_list,full_frames = get_landmark_and_bbox(img_list)
with open(crop_coord_path, 'wb') as f:
pickle.dump(coords_list, f)
for bbox, frame in zip(coords_list,full_frames):
if bbox == coord_placeholder:
continue
x1, y1, x2, y2 = bbox
crop_frame = frame[y1:y2, x1:x2]
print('Cropped shape', crop_frame.shape)
#cv2.imwrite(path.join(save_dir, '{}.png'.format(i)),full_frames[i][0][y1:y2, x1:x2])
print(coords_list)

64
musetalk/utils/utils.py Normal file
View File

@ -0,0 +1,64 @@
import os
import cv2
import numpy as np
import torch
ffmpeg_path = os.getenv('FFMPEG_PATH')
if ffmpeg_path is None:
print("please download ffmpeg-static and export to FFMPEG_PATH. \nFor example: export FFMPEG_PATH=/musetalk/ffmpeg-4.4-amd64-static")
elif ffmpeg_path not in os.getenv('PATH'):
print("add ffmpeg to path")
os.environ["PATH"] = f"{ffmpeg_path}:{os.environ['PATH']}"
from musetalk.whisper.audio2feature import Audio2Feature
from musetalk.models.vae import VAE
from musetalk.models.unet import UNet,PositionalEncoding
def load_all_model():
audio_processor = Audio2Feature(model_path="./models/whisper/tiny.pt")
vae = VAE(model_path = "./models/sd-vae-ft-mse/")
unet = UNet(unet_config="./models/musetalk/musetalk.json",
model_path ="./models/musetalk/pytorch_model.bin")
pe = PositionalEncoding(d_model=384)
return audio_processor,vae,unet,pe
def get_file_type(video_path):
_, ext = os.path.splitext(video_path)
if ext.lower() in ['.jpg', '.jpeg', '.png', '.bmp', '.tif', '.tiff']:
return 'image'
elif ext.lower() in ['.avi', '.mp4', '.mov', '.flv', '.mkv']:
return 'video'
else:
return 'unsupported'
def get_video_fps(video_path):
video = cv2.VideoCapture(video_path)
fps = video.get(cv2.CAP_PROP_FPS)
video.release()
return fps
def datagen(whisper_chunks,
vae_encode_latents,
batch_size=8,
delay_frame=0):
whisper_batch, latent_batch = [], []
for i, w in enumerate(whisper_chunks):
idx = (i+delay_frame)%len(vae_encode_latents)
latent = vae_encode_latents[idx]
whisper_batch.append(w)
latent_batch.append(latent)
if len(latent_batch) >= batch_size:
whisper_batch = np.stack(whisper_batch)
latent_batch = torch.cat(latent_batch, dim=0)
yield whisper_batch, latent_batch
whisper_batch, latent_batch = [], []
# the last batch may smaller than batch size
if len(latent_batch) > 0:
whisper_batch = np.stack(whisper_batch)
latent_batch = torch.cat(latent_batch, dim=0)
yield whisper_batch, latent_batch

View File

@ -0,0 +1,128 @@
import os
from .whisper import load_model
import soundfile as sf
import numpy as np
import time
import sys
sys.path.append("..")
class Audio2Feature():
def __init__(self,
whisper_model_type="tiny",
model_path="./models/whisper/tiny.pt"):
self.whisper_model_type = whisper_model_type
self.model = load_model(model_path) #
def get_sliced_feature(self,
feature_array,
vid_idx,
audio_feat_length=[2,2],
fps=25):
"""
Get sliced features based on a given index
:param feature_array:
:param start_idx: the start index of the feature
:param audio_feat_length:
:return:
"""
length = len(feature_array)
selected_feature = []
selected_idx = []
center_idx = int(vid_idx*50/fps)
left_idx = center_idx-audio_feat_length[0]*2
right_idx = center_idx + (audio_feat_length[1]+1)*2
for idx in range(left_idx,right_idx):
idx = max(0, idx)
idx = min(length-1, idx)
x = feature_array[idx]
selected_feature.append(x)
selected_idx.append(idx)
selected_feature = np.concatenate(selected_feature, axis=0)
selected_feature = selected_feature.reshape(-1, 384)# 50*384
return selected_feature,selected_idx
def get_sliced_feature_sparse(self,feature_array, vid_idx, audio_feat_length= [2,2],fps = 25):
"""
Get sliced features based on a given index
:param feature_array:
:param start_idx: the start index of the feature
:param audio_feat_length:
:return:
"""
length = len(feature_array)
selected_feature = []
selected_idx = []
for dt in range(-audio_feat_length[0],audio_feat_length[1]+1):
left_idx = int((vid_idx+dt)*50/fps)
if left_idx<1 or left_idx>length-1:
left_idx = max(0, left_idx)
left_idx = min(length-1, left_idx)
x = feature_array[left_idx]
x = x[np.newaxis,:,:]
x = np.repeat(x, 2, axis=0)
selected_feature.append(x)
selected_idx.append(left_idx)
selected_idx.append(left_idx)
else:
x = feature_array[left_idx-1:left_idx+1]
selected_feature.append(x)
selected_idx.append(left_idx-1)
selected_idx.append(left_idx)
selected_feature = np.concatenate(selected_feature, axis=0)
selected_feature = selected_feature.reshape(-1, 384)# 50*384
return selected_feature,selected_idx
def feature2chunks(self,feature_array,fps,audio_feat_length = [2,2]):
whisper_chunks = []
whisper_idx_multiplier = 50./fps
i = 0
print(f"video in {fps} FPS, audio idx in 50FPS")
while 1:
start_idx = int(i * whisper_idx_multiplier)
selected_feature,selected_idx = self.get_sliced_feature(feature_array= feature_array,vid_idx = i,audio_feat_length=audio_feat_length,fps=fps)
#print(f"i:{i},selected_idx {selected_idx}")
whisper_chunks.append(selected_feature)
i += 1
if start_idx>len(feature_array):
break
return whisper_chunks
def audio2feat(self,audio_path):
# get the sample rate of the audio
result = self.model.transcribe(audio_path)
embed_list = []
for emb in result['segments']:
encoder_embeddings = emb['encoder_embeddings']
encoder_embeddings = encoder_embeddings.transpose(0,2,1,3)
encoder_embeddings = encoder_embeddings.squeeze(0)
start_idx = int(emb['start'])
end_idx = int(emb['end'])
emb_end_idx = int((end_idx - start_idx)/2)
embed_list.append(encoder_embeddings[:emb_end_idx])
concatenated_array = np.concatenate(embed_list, axis=0)
return concatenated_array
if __name__ == "__main__":
audio_processor = Audio2Feature(model_path="../../models/whisper/whisper_tiny.pt")
audio_path = "./test.mp3"
array = audio_processor.audio2feat(audio_path)
print(array.shape)
fps = 25
whisper_idx_multiplier = 50./fps
i = 0
print(f"video in {fps} FPS, audio idx in 50FPS")
while 1:
start_idx = int(i * whisper_idx_multiplier)
selected_feature,selected_idx = audio_processor.get_sliced_feature(feature_array= array,vid_idx = i,audio_feat_length=[2,2],fps=fps)
print(f"video idx {i},\t audio idx {selected_idx},\t shape {selected_feature.shape}")
i += 1
if start_idx>len(array):
break

View File

@ -0,0 +1,116 @@
import hashlib
import io
import os
import urllib
import warnings
from typing import List, Optional, Union
import torch
from tqdm import tqdm
from .audio import load_audio, log_mel_spectrogram, pad_or_trim
from .decoding import DecodingOptions, DecodingResult, decode, detect_language
from .model import Whisper, ModelDimensions
from .transcribe import transcribe
_MODELS = {
"tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt",
"tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt",
"base.en": "https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt",
"base": "https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt",
"small.en": "https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt",
"small": "https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt",
"medium.en": "https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt",
"medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt",
"large": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt",
"large-v1": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large-v1.pt",
"large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt",
"large-v3": "https://openaipublic.azureedge.net/main/whisper/models/e5b1a55b89c1367dacf97e3e19bfd829a01529dbfdeefa8caeb59b3f1b81dadb/large-v3.pt",
}
def _download(url: str, root: str, in_memory: bool) -> Union[bytes, str]:
os.makedirs(root, exist_ok=True)
expected_sha256 = url.split("/")[-2]
download_target = os.path.join(root, os.path.basename(url))
if os.path.exists(download_target) and not os.path.isfile(download_target):
raise RuntimeError(f"{download_target} exists and is not a regular file")
if os.path.isfile(download_target):
model_bytes = open(download_target, "rb").read()
if hashlib.sha256(model_bytes).hexdigest() == expected_sha256:
return model_bytes if in_memory else download_target
else:
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop:
while True:
buffer = source.read(8192)
if not buffer:
break
output.write(buffer)
loop.update(len(buffer))
model_bytes = open(download_target, "rb").read()
if hashlib.sha256(model_bytes).hexdigest() != expected_sha256:
raise RuntimeError("Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.")
return model_bytes if in_memory else download_target
def available_models() -> List[str]:
"""Returns the names of available models"""
return list(_MODELS.keys())
def load_model(name: str, device: Optional[Union[str, torch.device]] = None, download_root: str = None, in_memory: bool = False) -> Whisper:
"""
Load a Whisper ASR model
Parameters
----------
name : str
one of the official model names listed by `whisper.available_models()`, or
path to a model checkpoint containing the model dimensions and the model state_dict.
device : Union[str, torch.device]
the PyTorch device to put the model into
download_root: str
path to download the model files; by default, it uses "~/.cache/whisper"
in_memory: bool
whether to preload the model weights into host memory
Returns
-------
model : Whisper
The Whisper ASR model instance
"""
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
if download_root is None:
download_root = os.getenv(
"XDG_CACHE_HOME",
os.path.join(os.path.expanduser("~"), ".cache", "whisper")
)
if name in _MODELS:
checkpoint_file = _download(_MODELS[name], download_root, in_memory)
elif os.path.isfile(name):
checkpoint_file = open(name, "rb").read() if in_memory else name
else:
raise RuntimeError(f"Model {name} not found; available models = {available_models()}")
with (io.BytesIO(checkpoint_file) if in_memory else open(checkpoint_file, "rb")) as fp:
checkpoint = torch.load(fp, map_location=device)
del checkpoint_file
dims = ModelDimensions(**checkpoint["dims"])
model = Whisper(dims)
model.load_state_dict(checkpoint["model_state_dict"])
return model.to(device)

View File

@ -0,0 +1,4 @@
from .transcribe import cli
cli()

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1 @@
{"bos_token": "<|endoftext|>", "eos_token": "<|endoftext|>", "unk_token": "<|endoftext|>"}

View File

@ -0,0 +1 @@
{"unk_token": "<|endoftext|>", "bos_token": "<|endoftext|>", "eos_token": "<|endoftext|>", "add_prefix_space": false, "model_max_length": 1024, "special_tokens_map_file": null, "name_or_path": "gpt2", "tokenizer_class": "GPT2Tokenizer"}

File diff suppressed because one or more lines are too long

Binary file not shown.

View File

@ -0,0 +1 @@
{"<|endoftext|>": 50257}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1 @@
{"bos_token": "<|endoftext|>", "eos_token": "<|endoftext|>", "unk_token": "<|endoftext|>"}

View File

@ -0,0 +1 @@
{"unk_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "bos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "add_prefix_space": false, "model_max_length": 1024, "special_tokens_map_file": null, "name_or_path": "multilingual", "errors": "replace", "tokenizer_class": "GPT2Tokenizer"}

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,125 @@
import os
from functools import lru_cache
from typing import Union
import ffmpeg
import numpy as np
import torch
import torch.nn.functional as F
from .utils import exact_div
# hard-coded audio hyperparameters
SAMPLE_RATE = 16000
N_FFT = 400
N_MELS = 80
HOP_LENGTH = 160
CHUNK_LENGTH = 30
N_SAMPLES = CHUNK_LENGTH * SAMPLE_RATE # 480000: number of samples in a chunk
N_FRAMES = exact_div(N_SAMPLES, HOP_LENGTH) # 3000: number of frames in a mel spectrogram input
def load_audio(file: str, sr: int = SAMPLE_RATE):
"""
Open an audio file and read as mono waveform, resampling as necessary
Parameters
----------
file: str
The audio file to open
sr: int
The sample rate to resample the audio if necessary
Returns
-------
A NumPy array containing the audio waveform, in float32 dtype.
"""
try:
# This launches a subprocess to decode audio while down-mixing and resampling as necessary.
# Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
out, _ = (
ffmpeg.input(file, threads=0)
.output("-", format="s16le", acodec="pcm_s16le", ac=1, ar=sr)
.run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True)
)
except ffmpeg.Error as e:
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0
def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1):
"""
Pad or trim the audio array to N_SAMPLES, as expected by the encoder.
"""
if torch.is_tensor(array):
if array.shape[axis] > length:
array = array.index_select(dim=axis, index=torch.arange(length))
if array.shape[axis] < length:
pad_widths = [(0, 0)] * array.ndim
pad_widths[axis] = (0, length - array.shape[axis])
array = F.pad(array, [pad for sizes in pad_widths[::-1] for pad in sizes])
else:
if array.shape[axis] > length:
array = array.take(indices=range(length), axis=axis)
if array.shape[axis] < length:
pad_widths = [(0, 0)] * array.ndim
pad_widths[axis] = (0, length - array.shape[axis])
array = np.pad(array, pad_widths)
return array
@lru_cache(maxsize=None)
def mel_filters(device, n_mels: int = N_MELS) -> torch.Tensor:
"""
load the mel filterbank matrix for projecting STFT into a Mel spectrogram.
Allows decoupling librosa dependency; saved using:
np.savez_compressed(
"mel_filters.npz",
mel_80=librosa.filters.mel(sr=16000, n_fft=400, n_mels=80),
)
"""
assert n_mels == 80, f"Unsupported n_mels: {n_mels}"
with np.load(os.path.join(os.path.dirname(__file__), "assets", "mel_filters.npz")) as f:
return torch.from_numpy(f[f"mel_{n_mels}"]).to(device)
def log_mel_spectrogram(audio: Union[str, np.ndarray, torch.Tensor], n_mels: int = N_MELS):
"""
Compute the log-Mel spectrogram of
Parameters
----------
audio: Union[str, np.ndarray, torch.Tensor], shape = (*)
The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz
n_mels: int
The number of Mel-frequency filters, only 80 is supported
Returns
-------
torch.Tensor, shape = (80, n_frames)
A Tensor that contains the Mel spectrogram
"""
if not torch.is_tensor(audio):
if isinstance(audio, str):
audio = load_audio(audio)
audio = torch.from_numpy(audio)
window = torch.hann_window(N_FFT).to(audio.device)
stft = torch.stft(audio, N_FFT, HOP_LENGTH, window=window, return_complex=True)
magnitudes = stft[:, :-1].abs() ** 2
filters = mel_filters(audio.device, n_mels)
mel_spec = filters @ magnitudes
log_spec = torch.clamp(mel_spec, min=1e-10).log10()
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
log_spec = (log_spec + 4.0) / 4.0
return log_spec

View File

@ -0,0 +1,729 @@
from dataclasses import dataclass, field
from typing import Dict, List, Tuple, Iterable, Optional, Sequence, Union, TYPE_CHECKING
import numpy as np
import torch
import torch.nn.functional as F
from torch import Tensor
from torch.distributions import Categorical
from .audio import CHUNK_LENGTH
from .tokenizer import Tokenizer, get_tokenizer
from .utils import compression_ratio
if TYPE_CHECKING:
from .model import Whisper
@torch.no_grad()
def detect_language(model: "Whisper", mel: Tensor, tokenizer: Tokenizer = None) -> Tuple[Tensor, List[dict]]:
"""
Detect the spoken language in the audio, and return them as list of strings, along with the ids
of the most probable language tokens and the probability distribution over all language tokens.
This is performed outside the main decode loop in order to not interfere with kv-caching.
Returns
-------
language_tokens : Tensor, shape = (n_audio,)
ids of the most probable language tokens, which appears after the startoftranscript token.
language_probs : List[Dict[str, float]], length = n_audio
list of dictionaries containing the probability distribution over all languages.
"""
if tokenizer is None:
tokenizer = get_tokenizer(model.is_multilingual)
if tokenizer.language is None or tokenizer.language_token not in tokenizer.sot_sequence:
raise ValueError(f"This model doesn't have language tokens so it can't perform lang id")
single = mel.ndim == 2
if single:
mel = mel.unsqueeze(0)
# skip encoder forward pass if already-encoded audio features were given
if mel.shape[-2:] != (model.dims.n_audio_ctx, model.dims.n_audio_state):
mel = model.encoder(mel)
# forward pass using a single token, startoftranscript
n_audio = mel.shape[0]
x = torch.tensor([[tokenizer.sot]] * n_audio).to(mel.device) # [n_audio, 1]
logits = model.logits(x, mel)[:, 0]
# collect detected languages; suppress all non-language tokens
mask = torch.ones(logits.shape[-1], dtype=torch.bool)
mask[list(tokenizer.all_language_tokens)] = False
logits[:, mask] = -np.inf
language_tokens = logits.argmax(dim=-1)
language_token_probs = logits.softmax(dim=-1).cpu()
language_probs = [
{
c: language_token_probs[i, j].item()
for j, c in zip(tokenizer.all_language_tokens, tokenizer.all_language_codes)
}
for i in range(n_audio)
]
if single:
language_tokens = language_tokens[0]
language_probs = language_probs[0]
return language_tokens, language_probs
@dataclass(frozen=True)
class DecodingOptions:
task: str = "transcribe" # whether to perform X->X "transcribe" or X->English "translate"
language: Optional[str] = None # language that the audio is in; uses detected language if None
# sampling-related options
temperature: float = 0.0
sample_len: Optional[int] = None # maximum number of tokens to sample
best_of: Optional[int] = None # number of independent samples to collect, when t > 0
beam_size: Optional[int] = None # number of beams in beam search, when t == 0
patience: Optional[float] = None # patience in beam search (https://arxiv.org/abs/2204.05424)
# options for ranking generations (either beams or best-of-N samples)
length_penalty: Optional[float] = None # "alpha" in Google NMT, None defaults to length norm
# prompt, prefix, and token suppression
prompt: Optional[Union[str, List[int]]] = None # text or tokens for the previous context
prefix: Optional[Union[str, List[int]]] = None # text or tokens to prefix the current context
suppress_blank: bool = True # this will suppress blank outputs
# list of tokens ids (or comma-separated token ids) to suppress
# "-1" will suppress a set of symbols as defined in `tokenizer.non_speech_tokens()`
suppress_tokens: Optional[Union[str, Iterable[int]]] = "-1"
# timestamp sampling options
without_timestamps: bool = False # use <|notimestamps|> to sample text tokens only
max_initial_timestamp: Optional[float] = 1.0 # the initial timestamp cannot be later than this
# implementation details
fp16: bool = True # use fp16 for most of the calculation
@dataclass(frozen=True)
class DecodingResult:
audio_features: Tensor
language: str
encoder_embeddings: np.ndarray
decoder_embeddings: np.ndarray
language_probs: Optional[Dict[str, float]] = None
tokens: List[int] = field(default_factory=list)
text: str = ""
avg_logprob: float = np.nan
no_speech_prob: float = np.nan
temperature: float = np.nan
compression_ratio: float = np.nan
class Inference:
def logits(self, tokens: Tensor, audio_features: Tensor) -> Tensor:
"""Perform a forward pass on the decoder and return per-token logits"""
raise NotImplementedError
def rearrange_kv_cache(self, source_indices) -> None:
"""Update the key-value cache according to the updated beams"""
raise NotImplementedError
def cleanup_caching(self) -> None:
"""Clean up any resources or hooks after decoding is finished"""
pass
class PyTorchInference(Inference):
def __init__(self, model: "Whisper", initial_token_length: int):
self.model: "Whisper" = model
self.initial_token_length = initial_token_length
self.kv_cache = {}
self.hooks = []
def logits(self, tokens: Tensor, audio_features: Tensor, include_embeddings=False) -> Tensor:
if not self.kv_cache:
self.kv_cache, self.hooks = self.model.install_kv_cache_hooks()
if tokens.shape[-1] > self.initial_token_length:
# only need to use the last token except in the first forward pass
tokens = tokens[:, -1:]
return_val = self.model.decoder(tokens, audio_features,
kv_cache=self.kv_cache, include_embeddings=include_embeddings)
return return_val
def cleanup_caching(self):
for hook in self.hooks:
hook.remove()
self.kv_cache = {}
self.hooks = []
def rearrange_kv_cache(self, source_indices):
for module, tensor in self.kv_cache.items():
# update the key/value cache to contain the selected sequences
self.kv_cache[module] = tensor[source_indices].detach()
class SequenceRanker:
def rank(self, tokens: List[List[Tensor]], sum_logprobs: List[List[float]]) -> List[int]:
"""
Given a list of groups of samples and their cumulative log probabilities,
return the indices of the samples in each group to select as the final result
"""
raise NotImplementedError
class MaximumLikelihoodRanker(SequenceRanker):
"""
Select the sample with the highest log probabilities, penalized using either
a simple length normalization or Google NMT paper's length penalty
"""
def __init__(self, length_penalty: Optional[float]):
self.length_penalty = length_penalty
def rank(self, tokens: List[List[Tensor]], sum_logprobs: List[List[float]]):
def scores(logprobs, lengths):
result = []
for logprob, length in zip(logprobs, lengths):
if self.length_penalty is None:
penalty = length
else:
# from the Google NMT paper
penalty = ((5 + length) / 6) ** self.length_penalty
result.append(logprob / penalty)
return result
# get the sequence with the highest score
lengths = [[len(t) for t in s] for s in tokens]
return [np.argmax(scores(p, l)) for p, l in zip(sum_logprobs, lengths)]
class TokenDecoder:
def reset(self):
"""Initialize any stateful variables for decoding a new sequence"""
def update(self, tokens: Tensor, logits: Tensor, sum_logprobs: Tensor) -> Tuple[Tensor, bool]:
"""Specify how to select the next token, based on the current trace and logits
Parameters
----------
tokens : Tensor, shape = (n_batch, current_sequence_length)
all tokens in the context so far, including the prefix and sot_sequence tokens
logits : Tensor, shape = (n_batch, vocab_size)
per-token logits of the probability distribution at the current step
sum_logprobs : Tensor, shape = (n_batch)
cumulative log probabilities for each sequence
Returns
-------
tokens : Tensor, shape = (n_batch, current_sequence_length + 1)
the tokens, appended with the selected next token
completed : bool
True if all sequences has reached the end of text
"""
raise NotImplementedError
def finalize(
self, tokens: Tensor, sum_logprobs: Tensor
) -> Tuple[Sequence[Sequence[Tensor]], List[List[float]]]:
"""Finalize search and return the final candidate sequences
Parameters
----------
tokens : Tensor, shape = (n_audio, n_group, current_sequence_length)
all tokens in the context so far, including the prefix and sot_sequence
sum_logprobs : Tensor, shape = (n_audio, n_group)
cumulative log probabilities for each sequence
Returns
-------
tokens : Sequence[Sequence[Tensor]], length = n_audio
sequence of Tensors containing candidate token sequences, for each audio input
sum_logprobs : List[List[float]], length = n_audio
sequence of cumulative log probabilities corresponding to the above
"""
raise NotImplementedError
class GreedyDecoder(TokenDecoder):
def __init__(self, temperature: float, eot: int):
self.temperature = temperature
self.eot = eot
def update(self, tokens: Tensor, logits: Tensor, sum_logprobs: Tensor) -> Tuple[Tensor, bool]:
temperature = self.temperature
if temperature == 0:
next_tokens = logits.argmax(dim=-1)
else:
next_tokens = Categorical(logits=logits / temperature).sample()
logprobs = F.log_softmax(logits.float(), dim=-1)
current_logprobs = logprobs[torch.arange(logprobs.shape[0]), next_tokens]
sum_logprobs += current_logprobs * (tokens[:, -1] != self.eot)
next_tokens[tokens[:, -1] == self.eot] = self.eot
tokens = torch.cat([tokens, next_tokens[:, None]], dim=-1)
completed = (tokens[:, -1] == self.eot).all()
return tokens, completed
def finalize(self, tokens: Tensor, sum_logprobs: Tensor):
# make sure each sequence has at least one EOT token at the end
tokens = F.pad(tokens, (0, 1), value=self.eot)
return tokens, sum_logprobs.tolist()
class BeamSearchDecoder(TokenDecoder):
def __init__(self, beam_size: int, eot: int, inference: Inference, patience: Optional[float] = None):
self.beam_size = beam_size
self.eot = eot
self.inference = inference
self.patience = patience or 1.0
self.max_candidates: int = round(beam_size * self.patience)
self.finished_sequences = None
assert self.max_candidates > 0, f"Invalid beam size ({beam_size}) or patience ({patience})"
def reset(self):
self.finished_sequences = None
def update(self, tokens: Tensor, logits: Tensor, sum_logprobs: Tensor) -> Tuple[Tensor, bool]:
if tokens.shape[0] % self.beam_size != 0:
raise ValueError(f"{tokens.shape}[0] % {self.beam_size} != 0")
n_audio = tokens.shape[0] // self.beam_size
if self.finished_sequences is None: # for the first update
self.finished_sequences = [{} for _ in range(n_audio)]
logprobs = F.log_softmax(logits.float(), dim=-1)
next_tokens, source_indices, finished_sequences = [], [], []
for i in range(n_audio):
scores, sources, finished = {}, {}, {}
# STEP 1: calculate the cumulative log probabilities for possible candidates
for j in range(self.beam_size):
idx = i * self.beam_size + j
prefix = tokens[idx].tolist()
for logprob, token in zip(*logprobs[idx].topk(self.beam_size + 1)):
new_logprob = (sum_logprobs[idx] + logprob).item()
sequence = tuple(prefix + [token.item()])
scores[sequence] = new_logprob
sources[sequence] = idx
# STEP 2: rank the candidates and keep the top beam_size sequences for each audio
saved = 0
for sequence in sorted(scores, key=scores.get, reverse=True):
if sequence[-1] == self.eot:
finished[sequence] = scores[sequence]
else:
sum_logprobs[len(next_tokens)] = scores[sequence]
next_tokens.append(sequence)
source_indices.append(sources[sequence])
saved += 1
if saved == self.beam_size:
break
finished_sequences.append(finished)
tokens = torch.tensor(next_tokens, device=tokens.device)
self.inference.rearrange_kv_cache(source_indices)
# add newly finished sequences to self.finished_sequences
assert len(self.finished_sequences) == len(finished_sequences)
for previously_finished, newly_finished in zip(self.finished_sequences, finished_sequences):
for seq in sorted(newly_finished, key=newly_finished.get, reverse=True):
if len(previously_finished) >= self.max_candidates:
break # the candidate list is full
previously_finished[seq] = newly_finished[seq]
# mark as completed if all audio has enough number of samples
completed = all(
len(sequences) >= self.max_candidates for sequences in self.finished_sequences
)
return tokens, completed
def finalize(self, preceding_tokens: Tensor, sum_logprobs: Tensor):
# collect all finished sequences, including patience, and add unfinished ones if not enough
sum_logprobs = sum_logprobs.cpu()
for i, sequences in enumerate(self.finished_sequences):
if len(sequences) < self.beam_size: # when not enough sequences are finished
for j in list(np.argsort(sum_logprobs[i]))[::-1]:
sequence = preceding_tokens[i, j].tolist() + [self.eot]
sequences[tuple(sequence)] = sum_logprobs[i][j].item()
if len(sequences) >= self.beam_size:
break
tokens: List[List[Tensor]] = [
[torch.tensor(seq) for seq in sequences.keys()] for sequences in self.finished_sequences
]
sum_logprobs: List[List[float]] = [
list(sequences.values()) for sequences in self.finished_sequences
]
return tokens, sum_logprobs
class LogitFilter:
def apply(self, logits: Tensor, tokens: Tensor) -> None:
"""Apply any filtering or masking to logits in-place
Parameters
----------
logits : Tensor, shape = (n_batch, vocab_size)
per-token logits of the probability distribution at the current step
tokens : Tensor, shape = (n_batch, current_sequence_length)
all tokens in the context so far, including the prefix and sot_sequence tokens
"""
raise NotImplementedError
class SuppressBlank(LogitFilter):
def __init__(self, tokenizer: Tokenizer, sample_begin: int):
self.tokenizer = tokenizer
self.sample_begin = sample_begin
def apply(self, logits: Tensor, tokens: Tensor):
if tokens.shape[1] == self.sample_begin:
logits[:, self.tokenizer.encode(" ") + [self.tokenizer.eot]] = -np.inf
class SuppressTokens(LogitFilter):
def __init__(self, suppress_tokens: Sequence[int]):
self.suppress_tokens = list(suppress_tokens)
def apply(self, logits: Tensor, tokens: Tensor):
logits[:, self.suppress_tokens] = -np.inf
class ApplyTimestampRules(LogitFilter):
def __init__(
self, tokenizer: Tokenizer, sample_begin: int, max_initial_timestamp_index: Optional[int]
):
self.tokenizer = tokenizer
self.sample_begin = sample_begin
self.max_initial_timestamp_index = max_initial_timestamp_index
def apply(self, logits: Tensor, tokens: Tensor):
# suppress <|notimestamps|> which is handled by without_timestamps
if self.tokenizer.no_timestamps is not None:
logits[:, self.tokenizer.no_timestamps] = -np.inf
# timestamps have to appear in pairs, except directly before EOT; mask logits accordingly
for k in range(tokens.shape[0]):
seq = [t for t in tokens[k, self.sample_begin :].tolist()]
last_was_timestamp = len(seq) >= 1 and seq[-1] >= self.tokenizer.timestamp_begin
penultimate_was_timestamp = len(seq) < 2 or seq[-2] >= self.tokenizer.timestamp_begin
if last_was_timestamp:
if penultimate_was_timestamp: # has to be non-timestamp
logits[k, self.tokenizer.timestamp_begin :] = -np.inf
else: # cannot be normal text tokens
logits[k, : self.tokenizer.eot] = -np.inf
# apply the `max_initial_timestamp` option
if tokens.shape[1] == self.sample_begin and self.max_initial_timestamp_index is not None:
last_allowed = self.tokenizer.timestamp_begin + self.max_initial_timestamp_index
logits[:, last_allowed + 1 :] = -np.inf
# if sum of probability over timestamps is above any other token, sample timestamp
logprobs = F.log_softmax(logits.float(), dim=-1)
for k in range(tokens.shape[0]):
timestamp_logprob = logprobs[k, self.tokenizer.timestamp_begin :].logsumexp(dim=-1)
max_text_token_logprob = logprobs[k, : self.tokenizer.timestamp_begin].max()
if timestamp_logprob > max_text_token_logprob:
logits[k, : self.tokenizer.timestamp_begin] = -np.inf
class DecodingTask:
inference: Inference
sequence_ranker: SequenceRanker
decoder: TokenDecoder
logit_filters: List[LogitFilter]
def __init__(self, model: "Whisper", options: DecodingOptions):
self.model = model
language = options.language or "en"
tokenizer = get_tokenizer(model.is_multilingual, language=language, task=options.task)
self.tokenizer: Tokenizer = tokenizer
self.options: DecodingOptions = self._verify_options(options)
self.n_group: int = options.beam_size or options.best_of or 1
self.n_ctx: int = model.dims.n_text_ctx
self.sample_len: int = options.sample_len or model.dims.n_text_ctx // 2
self.sot_sequence: Tuple[int] = tokenizer.sot_sequence
if self.options.without_timestamps:
self.sot_sequence = tokenizer.sot_sequence_including_notimestamps
self.initial_tokens: Tuple[int] = self._get_initial_tokens()
self.sample_begin: int = len(self.initial_tokens)
self.sot_index: int = self.initial_tokens.index(tokenizer.sot)
# inference: implements the forward pass through the decoder, including kv caching
self.inference = PyTorchInference(model, len(self.initial_tokens))
# sequence ranker: implements how to rank a group of sampled sequences
self.sequence_ranker = MaximumLikelihoodRanker(options.length_penalty)
# decoder: implements how to select the next tokens, given the autoregressive distribution
if options.beam_size is not None:
self.decoder = BeamSearchDecoder(
options.beam_size, tokenizer.eot, self.inference, options.patience
)
else:
self.decoder = GreedyDecoder(options.temperature, tokenizer.eot)
# logit filters: applies various rules to suppress or penalize certain tokens
self.logit_filters = []
if self.options.suppress_blank:
self.logit_filters.append(SuppressBlank(self.tokenizer, self.sample_begin))
if self.options.suppress_tokens:
self.logit_filters.append(SuppressTokens(self._get_suppress_tokens()))
if not options.without_timestamps:
precision = CHUNK_LENGTH / model.dims.n_audio_ctx # usually 0.02 seconds
max_initial_timestamp_index = None
if options.max_initial_timestamp:
max_initial_timestamp_index = round(self.options.max_initial_timestamp / precision)
self.logit_filters.append(
ApplyTimestampRules(tokenizer, self.sample_begin, max_initial_timestamp_index)
)
def _verify_options(self, options: DecodingOptions) -> DecodingOptions:
if options.beam_size is not None and options.best_of is not None:
raise ValueError("beam_size and best_of can't be given together")
if options.temperature == 0:
if options.best_of is not None:
raise ValueError("best_of with greedy sampling (T=0) is not compatible")
if options.patience is not None and options.beam_size is None:
raise ValueError("patience requires beam_size to be given")
if options.length_penalty is not None and not (0 <= options.length_penalty <= 1):
raise ValueError("length_penalty (alpha) should be a value between 0 and 1")
return options
def _get_initial_tokens(self) -> Tuple[int]:
tokens = list(self.sot_sequence)
prefix = self.options.prefix
prompt = self.options.prompt
if prefix:
prefix_tokens = (
self.tokenizer.encode(" " + prefix.strip()) if isinstance(prefix, str) else prefix
)
if self.sample_len is not None:
max_prefix_len = self.n_ctx // 2 - self.sample_len
prefix_tokens = prefix_tokens[-max_prefix_len:]
tokens = tokens + prefix_tokens
if prompt:
prompt_tokens = (
self.tokenizer.encode(" " + prompt.strip()) if isinstance(prompt, str) else prompt
)
tokens = [self.tokenizer.sot_prev] + prompt_tokens[-(self.n_ctx // 2 - 1) :] + tokens
return tuple(tokens)
def _get_suppress_tokens(self) -> Tuple[int]:
suppress_tokens = self.options.suppress_tokens
if isinstance(suppress_tokens, str):
suppress_tokens = [int(t) for t in suppress_tokens.split(",")]
if -1 in suppress_tokens:
suppress_tokens = [t for t in suppress_tokens if t >= 0]
suppress_tokens.extend(self.tokenizer.non_speech_tokens)
elif suppress_tokens is None or len(suppress_tokens) == 0:
suppress_tokens = [] # interpret empty string as an empty list
else:
assert isinstance(suppress_tokens, list), "suppress_tokens must be a list"
suppress_tokens.extend(
[self.tokenizer.sot, self.tokenizer.sot_prev, self.tokenizer.sot_lm]
)
if self.tokenizer.no_speech is not None:
# no-speech probability is collected separately
suppress_tokens.append(self.tokenizer.no_speech)
return tuple(sorted(set(suppress_tokens)))
def _get_audio_features(self, mel: Tensor, include_embeddings: bool = False):
if self.options.fp16:
mel = mel.half()
if mel.shape[-2:] == (self.model.dims.n_audio_ctx, self.model.dims.n_audio_state):
# encoded audio features are given; skip audio encoding
audio_features = mel
else:
result = self.model.encoder(mel, include_embeddings)
if include_embeddings:
audio_features, embeddings = result
else:
audio_features = result
if audio_features.dtype != (torch.float16 if self.options.fp16 else torch.float32):
return TypeError(f"audio_features has an incorrect dtype: {audio_features.dtype}")
if include_embeddings:
return audio_features, embeddings
else:
return audio_features
def _detect_language(self, audio_features: Tensor, tokens: Tensor):
languages = [self.options.language] * audio_features.shape[0]
lang_probs = None
if self.options.language is None or self.options.task == "lang_id":
lang_tokens, lang_probs = self.model.detect_language(audio_features, self.tokenizer)
languages = [max(probs, key=probs.get) for probs in lang_probs]
if self.options.language is None:
tokens[:, self.sot_index + 1] = lang_tokens # write language tokens
return languages, lang_probs
def _main_loop(self, audio_features: Tensor, tokens: Tensor):
assert audio_features.shape[0] == tokens.shape[0]
n_batch = tokens.shape[0]
sum_logprobs: Tensor = torch.zeros(n_batch, device=audio_features.device)
no_speech_probs = [np.nan] * n_batch
try:
embeddings = []
for i in range(self.sample_len):
logits, token_embeddings = self.inference.logits(tokens, audio_features, include_embeddings=True)
if i == 0 and self.tokenizer.no_speech is not None: # save no_speech_probs
probs_at_sot = logits[:, self.sot_index].float().softmax(dim=-1)
no_speech_probs = probs_at_sot[:, self.tokenizer.no_speech].tolist()
# now we need to consider the logits at the last token only
logits = logits[:, -1]
token_embeddings = token_embeddings[:, :, -1]
# Append embeddings together
embeddings.append(token_embeddings)
# apply the logit filters, e.g. for suppressing or applying penalty to
for logit_filter in self.logit_filters:
logit_filter.apply(logits, tokens)
# expand the tokens tensor with the selected next tokens
tokens, completed = self.decoder.update(tokens, logits, sum_logprobs)
if completed or tokens.shape[-1] > self.n_ctx:
break
finally:
if completed:
embeddings = embeddings[:-1]
embeddings = np.stack(embeddings, 2)
self.inference.cleanup_caching()
return tokens, sum_logprobs, no_speech_probs, embeddings
@torch.no_grad()
def run(self, mel: Tensor) -> List[DecodingResult]:
self.decoder.reset()
tokenizer: Tokenizer = self.tokenizer
n_audio: int = mel.shape[0]
# encoder forward pass
forward_pass: Tuple[Tensor, np.ndarray] = self._get_audio_features(mel, include_embeddings=True)
audio_features, encoder_embeddings = forward_pass
tokens: Tensor = torch.tensor([self.initial_tokens]).repeat(n_audio, 1)
# detect language if requested, overwriting the language token
languages, language_probs = self._detect_language(audio_features, tokens)
if self.options.task == "lang_id":
return [
DecodingResult(audio_features=features, language=language, language_probs=probs)
for features, language, probs in zip(audio_features, languages, language_probs)
]
# repeat the audio & text tensors by the group size, for beam search or best-of-n sampling
audio_features = audio_features.repeat_interleave(self.n_group, dim=0)
tokens = tokens.repeat_interleave(self.n_group, dim=0).to(audio_features.device)
# call the main sampling loop
tokens, sum_logprobs, no_speech_probs, decoder_embeddings = self._main_loop(audio_features, tokens)
# reshape the tensors to have (n_audio, n_group) as the first two dimensions
audio_features = audio_features[:: self.n_group]
no_speech_probs = no_speech_probs[:: self.n_group]
assert audio_features.shape[0] == len(no_speech_probs) == n_audio
tokens = tokens.reshape(n_audio, self.n_group, -1)
sum_logprobs = sum_logprobs.reshape(n_audio, self.n_group)
# get the final candidates for each group, and slice between the first sampled token and EOT
tokens, sum_logprobs = self.decoder.finalize(tokens, sum_logprobs)
tokens: List[List[Tensor]] = [
[t[self.sample_begin : (t == tokenizer.eot).nonzero()[0, 0]] for t in s] for s in tokens
]
# select the top-ranked sample in each group
selected = self.sequence_ranker.rank(tokens, sum_logprobs)
tokens: List[List[int]] = [t[i].tolist() for i, t in zip(selected, tokens)]
texts: List[str] = [tokenizer.decode(t).strip() for t in tokens]
sum_logprobs: List[float] = [lp[i] for i, lp in zip(selected, sum_logprobs)]
avg_logprobs: List[float] = [lp / (len(t) + 1) for t, lp in zip(tokens, sum_logprobs)]
fields = (texts, languages, tokens, audio_features, avg_logprobs, no_speech_probs)
if len(set(map(len, fields))) != 1:
raise RuntimeError(f"inconsistent result lengths: {list(map(len, fields))}")
return [
DecodingResult(
audio_features=features,
language=language,
tokens=tokens,
text=text,
avg_logprob=avg_logprob,
no_speech_prob=no_speech_prob,
temperature=self.options.temperature,
compression_ratio=compression_ratio(text),
encoder_embeddings=encoder_embeddings,
decoder_embeddings=decoder_embeddings
)
for text, language, tokens, features, avg_logprob, no_speech_prob in zip(*fields)
]
@torch.no_grad()
def decode(model: "Whisper", mel: Tensor, options: DecodingOptions = DecodingOptions()) -> Union[DecodingResult, List[DecodingResult]]:
"""
Performs decoding of 30-second audio segment(s), provided as Mel spectrogram(s).
Parameters
----------
model: Whisper
the Whisper model instance
mel: torch.Tensor, shape = (80, 3000) or (*, 80, 3000)
A tensor containing the Mel spectrogram(s)
options: DecodingOptions
A dataclass that contains all necessary options for decoding 30-second segments
Returns
-------
result: Union[DecodingResult, List[DecodingResult]]
The result(s) of decoding contained in `DecodingResult` dataclass instance(s)
"""
single = mel.ndim == 2
if single:
mel = mel.unsqueeze(0)
result = DecodingTask(model, options).run(mel)
if single:
result = result[0]
return result

View File

@ -0,0 +1,290 @@
from dataclasses import dataclass
from typing import Dict
from typing import Iterable, Optional
import numpy as np
import torch
import torch.nn.functional as F
from torch import Tensor
from torch import nn
from .transcribe import transcribe as transcribe_function
from .decoding import detect_language as detect_language_function, decode as decode_function
@dataclass
class ModelDimensions:
n_mels: int
n_audio_ctx: int
n_audio_state: int
n_audio_head: int
n_audio_layer: int
n_vocab: int
n_text_ctx: int
n_text_state: int
n_text_head: int
n_text_layer: int
class LayerNorm(nn.LayerNorm):
def forward(self, x: Tensor) -> Tensor:
return super().forward(x.float()).type(x.dtype)
class Linear(nn.Linear):
def forward(self, x: Tensor) -> Tensor:
return F.linear(
x, self.weight.to(x.dtype), None if self.bias is None else self.bias.to(x.dtype)
)
class Conv1d(nn.Conv1d):
def _conv_forward(self, x: Tensor, weight: Tensor, bias: Optional[Tensor]) -> Tensor:
return super()._conv_forward(
x, weight.to(x.dtype), None if bias is None else bias.to(x.dtype)
)
def sinusoids(length, channels, max_timescale=10000):
"""Returns sinusoids for positional embedding"""
assert channels % 2 == 0
log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2))
scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)
class MultiHeadAttention(nn.Module):
def __init__(self, n_state: int, n_head: int):
super().__init__()
self.n_head = n_head
self.query = Linear(n_state, n_state)
self.key = Linear(n_state, n_state, bias=False)
self.value = Linear(n_state, n_state)
self.out = Linear(n_state, n_state)
def forward(
self,
x: Tensor,
xa: Optional[Tensor] = None,
mask: Optional[Tensor] = None,
kv_cache: Optional[dict] = None,
):
q = self.query(x)
if kv_cache is None or xa is None:
# hooks, if installed (i.e. kv_cache is not None), will prepend the cached kv tensors;
# otherwise, perform key/value projections for self- or cross-attention as usual.
k = self.key(x if xa is None else xa)
v = self.value(x if xa is None else xa)
else:
# for cross-attention, calculate keys and values once and reuse in subsequent calls.
k = kv_cache.get(self.key, self.key(xa))
v = kv_cache.get(self.value, self.value(xa))
wv = self.qkv_attention(q, k, v, mask)
return self.out(wv)
def qkv_attention(self, q: Tensor, k: Tensor, v: Tensor, mask: Optional[Tensor] = None):
n_batch, n_ctx, n_state = q.shape
scale = (n_state // self.n_head) ** -0.25
q = q.view(*q.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) * scale
k = k.view(*k.shape[:2], self.n_head, -1).permute(0, 2, 3, 1) * scale
v = v.view(*v.shape[:2], self.n_head, -1).permute(0, 2, 1, 3)
qk = q @ k
if mask is not None:
qk = qk + mask[:n_ctx, :n_ctx]
w = F.softmax(qk.float(), dim=-1).to(q.dtype)
return (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2)
class ResidualAttentionBlock(nn.Module):
def __init__(self, n_state: int, n_head: int, cross_attention: bool = False):
super().__init__()
self.attn = MultiHeadAttention(n_state, n_head)
self.attn_ln = LayerNorm(n_state)
self.cross_attn = MultiHeadAttention(n_state, n_head) if cross_attention else None
self.cross_attn_ln = LayerNorm(n_state) if cross_attention else None
n_mlp = n_state * 4
self.mlp = nn.Sequential(Linear(n_state, n_mlp), nn.GELU(), Linear(n_mlp, n_state))
self.mlp_ln = LayerNorm(n_state)
def forward(
self,
x: Tensor,
xa: Optional[Tensor] = None,
mask: Optional[Tensor] = None,
kv_cache: Optional[dict] = None,
):
x = x + self.attn(self.attn_ln(x), mask=mask, kv_cache=kv_cache)
if self.cross_attn:
x = x + self.cross_attn(self.cross_attn_ln(x), xa, kv_cache=kv_cache)
x = x + self.mlp(self.mlp_ln(x))
return x
class AudioEncoder(nn.Module):
def __init__(self, n_mels: int, n_ctx: int, n_state: int, n_head: int, n_layer: int):
super().__init__()
self.conv1 = Conv1d(n_mels, n_state, kernel_size=3, padding=1)
self.conv2 = Conv1d(n_state, n_state, kernel_size=3, stride=2, padding=1)
self.register_buffer("positional_embedding", sinusoids(n_ctx, n_state))
self.blocks: Iterable[ResidualAttentionBlock] = nn.ModuleList(
[ResidualAttentionBlock(n_state, n_head) for _ in range(n_layer)]
)
self.ln_post = LayerNorm(n_state)
def forward(self, x: Tensor, include_embeddings: bool = False):
"""
x : torch.Tensor, shape = (batch_size, n_mels, n_ctx)
the mel spectrogram of the audio
include_embeddings: bool
whether to include intermediate steps in the output
"""
x = F.gelu(self.conv1(x))
x = F.gelu(self.conv2(x))
x = x.permute(0, 2, 1)
assert x.shape[1:] == self.positional_embedding.shape, "incorrect audio shape"
x = (x + self.positional_embedding).to(x.dtype)
if include_embeddings:
embeddings = [x.cpu().detach().numpy()]
for block in self.blocks:
x = block(x)
if include_embeddings:
embeddings.append(x.cpu().detach().numpy())
x = self.ln_post(x)
if include_embeddings:
embeddings = np.stack(embeddings, axis=1)
return x, embeddings
else:
return x
class TextDecoder(nn.Module):
def __init__(self, n_vocab: int, n_ctx: int, n_state: int, n_head: int, n_layer: int):
super().__init__()
self.token_embedding = nn.Embedding(n_vocab, n_state)
self.positional_embedding = nn.Parameter(torch.empty(n_ctx, n_state))
self.blocks: Iterable[ResidualAttentionBlock] = nn.ModuleList(
[ResidualAttentionBlock(n_state, n_head, cross_attention=True) for _ in range(n_layer)]
)
self.ln = LayerNorm(n_state)
mask = torch.empty(n_ctx, n_ctx).fill_(-np.inf).triu_(1)
self.register_buffer("mask", mask, persistent=False)
def forward(self, x: Tensor, xa: Tensor, kv_cache: Optional[dict] = None, include_embeddings: bool = False):
"""
x : torch.LongTensor, shape = (batch_size, <= n_ctx)
the text tokens
xa : torch.Tensor, shape = (batch_size, n_mels, n_audio_ctx)
the encoded audio features to be attended on
include_embeddings : bool
Whether to include intermediate values in the output to this function
"""
offset = next(iter(kv_cache.values())).shape[1] if kv_cache else 0
x = self.token_embedding(x) + self.positional_embedding[offset : offset + x.shape[-1]]
x = x.to(xa.dtype)
if include_embeddings:
embeddings = [x.cpu().detach().numpy()]
for block in self.blocks:
x = block(x, xa, mask=self.mask, kv_cache=kv_cache)
if include_embeddings:
embeddings.append(x.cpu().detach().numpy())
x = self.ln(x)
logits = (x @ torch.transpose(self.token_embedding.weight.to(x.dtype), 0, 1)).float()
if include_embeddings:
embeddings = np.stack(embeddings, axis=1)
return logits, embeddings
else:
return logits
class Whisper(nn.Module):
def __init__(self, dims: ModelDimensions):
super().__init__()
self.dims = dims
self.encoder = AudioEncoder(
self.dims.n_mels,
self.dims.n_audio_ctx,
self.dims.n_audio_state,
self.dims.n_audio_head,
self.dims.n_audio_layer,
)
self.decoder = TextDecoder(
self.dims.n_vocab,
self.dims.n_text_ctx,
self.dims.n_text_state,
self.dims.n_text_head,
self.dims.n_text_layer,
)
def embed_audio(self, mel: torch.Tensor):
return self.encoder.forward(mel)
def logits(self, tokens: torch.Tensor, audio_features: torch.Tensor):
return self.decoder.forward(tokens, audio_features)
def forward(self, mel: torch.Tensor, tokens: torch.Tensor) -> Dict[str, torch.Tensor]:
return self.decoder(tokens, self.encoder(mel))
@property
def device(self):
return next(self.parameters()).device
@property
def is_multilingual(self):
return self.dims.n_vocab == 51865
def install_kv_cache_hooks(self, cache: Optional[dict] = None):
"""
The `MultiHeadAttention` module optionally accepts `kv_cache` which stores the key and value
tensors calculated for the previous positions. This method returns a dictionary that stores
all caches, and the necessary hooks for the key and value projection modules that save the
intermediate tensors to be reused during later calculations.
Returns
-------
cache : Dict[nn.Module, torch.Tensor]
A dictionary object mapping the key/value projection modules to its cache
hooks : List[RemovableHandle]
List of PyTorch RemovableHandle objects to stop the hooks to be called
"""
cache = {**cache} if cache is not None else {}
hooks = []
def save_to_cache(module, _, output):
if module not in cache or output.shape[1] > self.decoder.positional_embedding.shape[0]:
cache[module] = output # save as-is, for the first token or cross attention
else:
cache[module] = torch.cat([cache[module], output], dim=1).detach()
return cache[module]
def install_hooks(layer: nn.Module):
if isinstance(layer, MultiHeadAttention):
hooks.append(layer.key.register_forward_hook(save_to_cache))
hooks.append(layer.value.register_forward_hook(save_to_cache))
self.decoder.apply(install_hooks)
return cache, hooks
detect_language = detect_language_function
transcribe = transcribe_function
decode = decode_function

View File

@ -0,0 +1,2 @@
from .basic import BasicTextNormalizer
from .english import EnglishTextNormalizer

View File

@ -0,0 +1,71 @@
import re
import unicodedata
import regex
# non-ASCII letters that are not separated by "NFKD" normalization
ADDITIONAL_DIACRITICS = {
"œ": "oe",
"Œ": "OE",
"ø": "o",
"Ø": "O",
"æ": "ae",
"Æ": "AE",
"ß": "ss",
"": "SS",
"đ": "d",
"Đ": "D",
"ð": "d",
"Ð": "D",
"þ": "th",
"Þ": "th",
"ł": "l",
"Ł": "L",
}
def remove_symbols_and_diacritics(s: str, keep=""):
"""
Replace any other markers, symbols, and punctuations with a space,
and drop any diacritics (category 'Mn' and some manual mappings)
"""
return "".join(
c
if c in keep
else ADDITIONAL_DIACRITICS[c]
if c in ADDITIONAL_DIACRITICS
else ""
if unicodedata.category(c) == "Mn"
else " "
if unicodedata.category(c)[0] in "MSP"
else c
for c in unicodedata.normalize("NFKD", s)
)
def remove_symbols(s: str):
"""
Replace any other markers, symbols, punctuations with a space, keeping diacritics
"""
return "".join(
" " if unicodedata.category(c)[0] in "MSP" else c for c in unicodedata.normalize("NFKC", s)
)
class BasicTextNormalizer:
def __init__(self, remove_diacritics: bool = False, split_letters: bool = False):
self.clean = remove_symbols_and_diacritics if remove_diacritics else remove_symbols
self.split_letters = split_letters
def __call__(self, s: str):
s = s.lower()
s = re.sub(r"[<\[][^>\]]*[>\]]", "", s) # remove words between brackets
s = re.sub(r"\(([^)]+?)\)", "", s) # remove words between parenthesis
s = self.clean(s).lower()
if self.split_letters:
s = " ".join(regex.findall(r"\X", s, regex.U))
s = re.sub(r"\s+", " ", s) # replace any successive whitespace characters with a space
return s

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,543 @@
import json
import os
import re
from fractions import Fraction
from typing import Iterator, List, Match, Optional, Union
from more_itertools import windowed
from .basic import remove_symbols_and_diacritics
class EnglishNumberNormalizer:
"""
Convert any spelled-out numbers into arabic numbers, while handling:
- remove any commas
- keep the suffixes such as: `1960s`, `274th`, `32nd`, etc.
- spell out currency symbols after the number. e.g. `$20 million` -> `20000000 dollars`
- spell out `one` and `ones`
- interpret successive single-digit numbers as nominal: `one oh one` -> `101`
"""
def __init__(self):
super().__init__()
self.zeros = {"o", "oh", "zero"}
self.ones = {
name: i
for i, name in enumerate(
[
"one",
"two",
"three",
"four",
"five",
"six",
"seven",
"eight",
"nine",
"ten",
"eleven",
"twelve",
"thirteen",
"fourteen",
"fifteen",
"sixteen",
"seventeen",
"eighteen",
"nineteen",
],
start=1,
)
}
self.ones_plural = {
"sixes" if name == "six" else name + "s": (value, "s")
for name, value in self.ones.items()
}
self.ones_ordinal = {
"zeroth": (0, "th"),
"first": (1, "st"),
"second": (2, "nd"),
"third": (3, "rd"),
"fifth": (5, "th"),
"twelfth": (12, "th"),
**{
name + ("h" if name.endswith("t") else "th"): (value, "th")
for name, value in self.ones.items()
if value > 3 and value != 5 and value != 12
},
}
self.ones_suffixed = {**self.ones_plural, **self.ones_ordinal}
self.tens = {
"twenty": 20,
"thirty": 30,
"forty": 40,
"fifty": 50,
"sixty": 60,
"seventy": 70,
"eighty": 80,
"ninety": 90,
}
self.tens_plural = {
name.replace("y", "ies"): (value, "s") for name, value in self.tens.items()
}
self.tens_ordinal = {
name.replace("y", "ieth"): (value, "th") for name, value in self.tens.items()
}
self.tens_suffixed = {**self.tens_plural, **self.tens_ordinal}
self.multipliers = {
"hundred": 100,
"thousand": 1_000,
"million": 1_000_000,
"billion": 1_000_000_000,
"trillion": 1_000_000_000_000,
"quadrillion": 1_000_000_000_000_000,
"quintillion": 1_000_000_000_000_000_000,
"sextillion": 1_000_000_000_000_000_000_000,
"septillion": 1_000_000_000_000_000_000_000_000,
"octillion": 1_000_000_000_000_000_000_000_000_000,
"nonillion": 1_000_000_000_000_000_000_000_000_000_000,
"decillion": 1_000_000_000_000_000_000_000_000_000_000_000,
}
self.multipliers_plural = {
name + "s": (value, "s") for name, value in self.multipliers.items()
}
self.multipliers_ordinal = {
name + "th": (value, "th") for name, value in self.multipliers.items()
}
self.multipliers_suffixed = {**self.multipliers_plural, **self.multipliers_ordinal}
self.decimals = {*self.ones, *self.tens, *self.zeros}
self.preceding_prefixers = {
"minus": "-",
"negative": "-",
"plus": "+",
"positive": "+",
}
self.following_prefixers = {
"pound": "£",
"pounds": "£",
"euro": "",
"euros": "",
"dollar": "$",
"dollars": "$",
"cent": "¢",
"cents": "¢",
}
self.prefixes = set(
list(self.preceding_prefixers.values()) + list(self.following_prefixers.values())
)
self.suffixers = {
"per": {"cent": "%"},
"percent": "%",
}
self.specials = {"and", "double", "triple", "point"}
self.words = set(
[
key
for mapping in [
self.zeros,
self.ones,
self.ones_suffixed,
self.tens,
self.tens_suffixed,
self.multipliers,
self.multipliers_suffixed,
self.preceding_prefixers,
self.following_prefixers,
self.suffixers,
self.specials,
]
for key in mapping
]
)
self.literal_words = {"one", "ones"}
def process_words(self, words: List[str]) -> Iterator[str]:
prefix: Optional[str] = None
value: Optional[Union[str, int]] = None
skip = False
def to_fraction(s: str):
try:
return Fraction(s)
except ValueError:
return None
def output(result: Union[str, int]):
nonlocal prefix, value
result = str(result)
if prefix is not None:
result = prefix + result
value = None
prefix = None
return result
if len(words) == 0:
return
for prev, current, next in windowed([None] + words + [None], 3):
if skip:
skip = False
continue
next_is_numeric = next is not None and re.match(r"^\d+(\.\d+)?$", next)
has_prefix = current[0] in self.prefixes
current_without_prefix = current[1:] if has_prefix else current
if re.match(r"^\d+(\.\d+)?$", current_without_prefix):
# arabic numbers (potentially with signs and fractions)
f = to_fraction(current_without_prefix)
assert f is not None
if value is not None:
if isinstance(value, str) and value.endswith("."):
# concatenate decimals / ip address components
value = str(value) + str(current)
continue
else:
yield output(value)
prefix = current[0] if has_prefix else prefix
if f.denominator == 1:
value = f.numerator # store integers as int
else:
value = current_without_prefix
elif current not in self.words:
# non-numeric words
if value is not None:
yield output(value)
yield output(current)
elif current in self.zeros:
value = str(value or "") + "0"
elif current in self.ones:
ones = self.ones[current]
if value is None:
value = ones
elif isinstance(value, str) or prev in self.ones:
if prev in self.tens and ones < 10: # replace the last zero with the digit
assert value[-1] == "0"
value = value[:-1] + str(ones)
else:
value = str(value) + str(ones)
elif ones < 10:
if value % 10 == 0:
value += ones
else:
value = str(value) + str(ones)
else: # eleven to nineteen
if value % 100 == 0:
value += ones
else:
value = str(value) + str(ones)
elif current in self.ones_suffixed:
# ordinal or cardinal; yield the number right away
ones, suffix = self.ones_suffixed[current]
if value is None:
yield output(str(ones) + suffix)
elif isinstance(value, str) or prev in self.ones:
if prev in self.tens and ones < 10:
assert value[-1] == "0"
yield output(value[:-1] + str(ones) + suffix)
else:
yield output(str(value) + str(ones) + suffix)
elif ones < 10:
if value % 10 == 0:
yield output(str(value + ones) + suffix)
else:
yield output(str(value) + str(ones) + suffix)
else: # eleven to nineteen
if value % 100 == 0:
yield output(str(value + ones) + suffix)
else:
yield output(str(value) + str(ones) + suffix)
value = None
elif current in self.tens:
tens = self.tens[current]
if value is None:
value = tens
elif isinstance(value, str):
value = str(value) + str(tens)
else:
if value % 100 == 0:
value += tens
else:
value = str(value) + str(tens)
elif current in self.tens_suffixed:
# ordinal or cardinal; yield the number right away
tens, suffix = self.tens_suffixed[current]
if value is None:
yield output(str(tens) + suffix)
elif isinstance(value, str):
yield output(str(value) + str(tens) + suffix)
else:
if value % 100 == 0:
yield output(str(value + tens) + suffix)
else:
yield output(str(value) + str(tens) + suffix)
elif current in self.multipliers:
multiplier = self.multipliers[current]
if value is None:
value = multiplier
elif isinstance(value, str) or value == 0:
f = to_fraction(value)
p = f * multiplier if f is not None else None
if f is not None and p.denominator == 1:
value = p.numerator
else:
yield output(value)
value = multiplier
else:
before = value // 1000 * 1000
residual = value % 1000
value = before + residual * multiplier
elif current in self.multipliers_suffixed:
multiplier, suffix = self.multipliers_suffixed[current]
if value is None:
yield output(str(multiplier) + suffix)
elif isinstance(value, str):
f = to_fraction(value)
p = f * multiplier if f is not None else None
if f is not None and p.denominator == 1:
yield output(str(p.numerator) + suffix)
else:
yield output(value)
yield output(str(multiplier) + suffix)
else: # int
before = value // 1000 * 1000
residual = value % 1000
value = before + residual * multiplier
yield output(str(value) + suffix)
value = None
elif current in self.preceding_prefixers:
# apply prefix (positive, minus, etc.) if it precedes a number
if value is not None:
yield output(value)
if next in self.words or next_is_numeric:
prefix = self.preceding_prefixers[current]
else:
yield output(current)
elif current in self.following_prefixers:
# apply prefix (dollars, cents, etc.) only after a number
if value is not None:
prefix = self.following_prefixers[current]
yield output(value)
else:
yield output(current)
elif current in self.suffixers:
# apply suffix symbols (percent -> '%')
if value is not None:
suffix = self.suffixers[current]
if isinstance(suffix, dict):
if next in suffix:
yield output(str(value) + suffix[next])
skip = True
else:
yield output(value)
yield output(current)
else:
yield output(str(value) + suffix)
else:
yield output(current)
elif current in self.specials:
if next not in self.words and not next_is_numeric:
# apply special handling only if the next word can be numeric
if value is not None:
yield output(value)
yield output(current)
elif current == "and":
# ignore "and" after hundreds, thousands, etc.
if prev not in self.multipliers:
if value is not None:
yield output(value)
yield output(current)
elif current == "double" or current == "triple":
if next in self.ones or next in self.zeros:
repeats = 2 if current == "double" else 3
ones = self.ones.get(next, 0)
value = str(value or "") + str(ones) * repeats
skip = True
else:
if value is not None:
yield output(value)
yield output(current)
elif current == "point":
if next in self.decimals or next_is_numeric:
value = str(value or "") + "."
else:
# should all have been covered at this point
raise ValueError(f"Unexpected token: {current}")
else:
# all should have been covered at this point
raise ValueError(f"Unexpected token: {current}")
if value is not None:
yield output(value)
def preprocess(self, s: str):
# replace "<number> and a half" with "<number> point five"
results = []
segments = re.split(r"\band\s+a\s+half\b", s)
for i, segment in enumerate(segments):
if len(segment.strip()) == 0:
continue
if i == len(segments) - 1:
results.append(segment)
else:
results.append(segment)
last_word = segment.rsplit(maxsplit=2)[-1]
if last_word in self.decimals or last_word in self.multipliers:
results.append("point five")
else:
results.append("and a half")
s = " ".join(results)
# put a space at number/letter boundary
s = re.sub(r"([a-z])([0-9])", r"\1 \2", s)
s = re.sub(r"([0-9])([a-z])", r"\1 \2", s)
# but remove spaces which could be a suffix
s = re.sub(r"([0-9])\s+(st|nd|rd|th|s)\b", r"\1\2", s)
return s
def postprocess(self, s: str):
def combine_cents(m: Match):
try:
currency = m.group(1)
integer = m.group(2)
cents = int(m.group(3))
return f"{currency}{integer}.{cents:02d}"
except ValueError:
return m.string
def extract_cents(m: Match):
try:
return f"¢{int(m.group(1))}"
except ValueError:
return m.string
# apply currency postprocessing; "$2 and ¢7" -> "$2.07"
s = re.sub(r"([€£$])([0-9]+) (?:and )?¢([0-9]{1,2})\b", combine_cents, s)
s = re.sub(r"[€£$]0.([0-9]{1,2})\b", extract_cents, s)
# write "one(s)" instead of "1(s)", just for the readability
s = re.sub(r"\b1(s?)\b", r"one\1", s)
return s
def __call__(self, s: str):
s = self.preprocess(s)
s = " ".join(word for word in self.process_words(s.split()) if word is not None)
s = self.postprocess(s)
return s
class EnglishSpellingNormalizer:
"""
Applies British-American spelling mappings as listed in [1].
[1] https://www.tysto.com/uk-us-spelling-list.html
"""
def __init__(self):
mapping_path = os.path.join(os.path.dirname(__file__), "english.json")
self.mapping = json.load(open(mapping_path))
def __call__(self, s: str):
return " ".join(self.mapping.get(word, word) for word in s.split())
class EnglishTextNormalizer:
def __init__(self):
self.ignore_patterns = r"\b(hmm|mm|mhm|mmm|uh|um)\b"
self.replacers = {
# common contractions
r"\bwon't\b": "will not",
r"\bcan't\b": "can not",
r"\blet's\b": "let us",
r"\bain't\b": "aint",
r"\by'all\b": "you all",
r"\bwanna\b": "want to",
r"\bgotta\b": "got to",
r"\bgonna\b": "going to",
r"\bi'ma\b": "i am going to",
r"\bimma\b": "i am going to",
r"\bwoulda\b": "would have",
r"\bcoulda\b": "could have",
r"\bshoulda\b": "should have",
r"\bma'am\b": "madam",
# contractions in titles/prefixes
r"\bmr\b": "mister ",
r"\bmrs\b": "missus ",
r"\bst\b": "saint ",
r"\bdr\b": "doctor ",
r"\bprof\b": "professor ",
r"\bcapt\b": "captain ",
r"\bgov\b": "governor ",
r"\bald\b": "alderman ",
r"\bgen\b": "general ",
r"\bsen\b": "senator ",
r"\brep\b": "representative ",
r"\bpres\b": "president ",
r"\brev\b": "reverend ",
r"\bhon\b": "honorable ",
r"\basst\b": "assistant ",
r"\bassoc\b": "associate ",
r"\blt\b": "lieutenant ",
r"\bcol\b": "colonel ",
r"\bjr\b": "junior ",
r"\bsr\b": "senior ",
r"\besq\b": "esquire ",
# prefect tenses, ideally it should be any past participles, but it's harder..
r"'d been\b": " had been",
r"'s been\b": " has been",
r"'d gone\b": " had gone",
r"'s gone\b": " has gone",
r"'d done\b": " had done", # "'s done" is ambiguous
r"'s got\b": " has got",
# general contractions
r"n't\b": " not",
r"'re\b": " are",
r"'s\b": " is",
r"'d\b": " would",
r"'ll\b": " will",
r"'t\b": " not",
r"'ve\b": " have",
r"'m\b": " am",
}
self.standardize_numbers = EnglishNumberNormalizer()
self.standardize_spellings = EnglishSpellingNormalizer()
def __call__(self, s: str):
s = s.lower()
s = re.sub(r"[<\[][^>\]]*[>\]]", "", s) # remove words between brackets
s = re.sub(r"\(([^)]+?)\)", "", s) # remove words between parenthesis
s = re.sub(self.ignore_patterns, "", s)
s = re.sub(r"\s+'", "'", s) # standardize when there's a space before an apostrophe
for pattern, replacement in self.replacers.items():
s = re.sub(pattern, replacement, s)
s = re.sub(r"(\d),(\d)", r"\1\2", s) # remove commas between digits
s = re.sub(r"\.([^0-9]|$)", r" \1", s) # remove periods not followed by numbers
s = remove_symbols_and_diacritics(s, keep=".%$¢€£") # keep some symbols for numerics
s = self.standardize_numbers(s)
s = self.standardize_spellings(s)
# now remove prefix/suffix symbols that are not preceded/followed by numbers
s = re.sub(r"[.$¢€£]([^0-9])", r" \1", s)
s = re.sub(r"([^0-9])%", r"\1 ", s)
s = re.sub(r"\s+", " ", s) # replace any successive whitespace characters with a space
return s

View File

@ -0,0 +1,331 @@
import os
from dataclasses import dataclass
from functools import lru_cache
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from transformers import GPT2TokenizerFast
LANGUAGES = {
"en": "english",
"zh": "chinese",
"de": "german",
"es": "spanish",
"ru": "russian",
"ko": "korean",
"fr": "french",
"ja": "japanese",
"pt": "portuguese",
"tr": "turkish",
"pl": "polish",
"ca": "catalan",
"nl": "dutch",
"ar": "arabic",
"sv": "swedish",
"it": "italian",
"id": "indonesian",
"hi": "hindi",
"fi": "finnish",
"vi": "vietnamese",
"iw": "hebrew",
"uk": "ukrainian",
"el": "greek",
"ms": "malay",
"cs": "czech",
"ro": "romanian",
"da": "danish",
"hu": "hungarian",
"ta": "tamil",
"no": "norwegian",
"th": "thai",
"ur": "urdu",
"hr": "croatian",
"bg": "bulgarian",
"lt": "lithuanian",
"la": "latin",
"mi": "maori",
"ml": "malayalam",
"cy": "welsh",
"sk": "slovak",
"te": "telugu",
"fa": "persian",
"lv": "latvian",
"bn": "bengali",
"sr": "serbian",
"az": "azerbaijani",
"sl": "slovenian",
"kn": "kannada",
"et": "estonian",
"mk": "macedonian",
"br": "breton",
"eu": "basque",
"is": "icelandic",
"hy": "armenian",
"ne": "nepali",
"mn": "mongolian",
"bs": "bosnian",
"kk": "kazakh",
"sq": "albanian",
"sw": "swahili",
"gl": "galician",
"mr": "marathi",
"pa": "punjabi",
"si": "sinhala",
"km": "khmer",
"sn": "shona",
"yo": "yoruba",
"so": "somali",
"af": "afrikaans",
"oc": "occitan",
"ka": "georgian",
"be": "belarusian",
"tg": "tajik",
"sd": "sindhi",
"gu": "gujarati",
"am": "amharic",
"yi": "yiddish",
"lo": "lao",
"uz": "uzbek",
"fo": "faroese",
"ht": "haitian creole",
"ps": "pashto",
"tk": "turkmen",
"nn": "nynorsk",
"mt": "maltese",
"sa": "sanskrit",
"lb": "luxembourgish",
"my": "myanmar",
"bo": "tibetan",
"tl": "tagalog",
"mg": "malagasy",
"as": "assamese",
"tt": "tatar",
"haw": "hawaiian",
"ln": "lingala",
"ha": "hausa",
"ba": "bashkir",
"jw": "javanese",
"su": "sundanese",
}
# language code lookup by name, with a few language aliases
TO_LANGUAGE_CODE = {
**{language: code for code, language in LANGUAGES.items()},
"burmese": "my",
"valencian": "ca",
"flemish": "nl",
"haitian": "ht",
"letzeburgesch": "lb",
"pushto": "ps",
"panjabi": "pa",
"moldavian": "ro",
"moldovan": "ro",
"sinhalese": "si",
"castilian": "es",
}
@dataclass(frozen=True)
class Tokenizer:
"""A thin wrapper around `GPT2TokenizerFast` providing quick access to special tokens"""
tokenizer: "GPT2TokenizerFast"
language: Optional[str]
sot_sequence: Tuple[int]
def encode(self, text, **kwargs):
return self.tokenizer.encode(text, **kwargs)
def decode(self, token_ids: Union[int, List[int], np.ndarray, torch.Tensor], **kwargs):
return self.tokenizer.decode(token_ids, **kwargs)
def decode_with_timestamps(self, tokens) -> str:
"""
Timestamp tokens are above the special tokens' id range and are ignored by `decode()`.
This method decodes given tokens with timestamps tokens annotated, e.g. "<|1.08|>".
"""
outputs = [[]]
for token in tokens:
if token >= self.timestamp_begin:
timestamp = f"<|{(token - self.timestamp_begin) * 0.02:.2f}|>"
outputs.append(timestamp)
outputs.append([])
else:
outputs[-1].append(token)
outputs = [s if isinstance(s, str) else self.tokenizer.decode(s) for s in outputs]
return "".join(outputs)
@property
@lru_cache()
def eot(self) -> int:
return self.tokenizer.eos_token_id
@property
@lru_cache()
def sot(self) -> int:
return self._get_single_token_id("<|startoftranscript|>")
@property
@lru_cache()
def sot_lm(self) -> int:
return self._get_single_token_id("<|startoflm|>")
@property
@lru_cache()
def sot_prev(self) -> int:
return self._get_single_token_id("<|startofprev|>")
@property
@lru_cache()
def no_speech(self) -> int:
return self._get_single_token_id("<|nospeech|>")
@property
@lru_cache()
def no_timestamps(self) -> int:
return self._get_single_token_id("<|notimestamps|>")
@property
@lru_cache()
def timestamp_begin(self) -> int:
return self.tokenizer.all_special_ids[-1] + 1
@property
@lru_cache()
def language_token(self) -> int:
"""Returns the token id corresponding to the value of the `language` field"""
if self.language is None:
raise ValueError(f"This tokenizer does not have language token configured")
additional_tokens = dict(
zip(
self.tokenizer.additional_special_tokens,
self.tokenizer.additional_special_tokens_ids,
)
)
candidate = f"<|{self.language}|>"
if candidate in additional_tokens:
return additional_tokens[candidate]
raise KeyError(f"Language {self.language} not found in tokenizer.")
@property
@lru_cache()
def all_language_tokens(self) -> Tuple[int]:
result = []
for token, token_id in zip(
self.tokenizer.additional_special_tokens,
self.tokenizer.additional_special_tokens_ids,
):
if token.strip("<|>") in LANGUAGES:
result.append(token_id)
return tuple(result)
@property
@lru_cache()
def all_language_codes(self) -> Tuple[str]:
return tuple(self.decode([l]).strip("<|>") for l in self.all_language_tokens)
@property
@lru_cache()
def sot_sequence_including_notimestamps(self) -> Tuple[int]:
return tuple(list(self.sot_sequence) + [self.no_timestamps])
@property
@lru_cache()
def non_speech_tokens(self) -> Tuple[int]:
"""
Returns the list of tokens to suppress in order to avoid any speaker tags or non-speech
annotations, to prevent sampling texts that are not actually spoken in the audio, e.g.
-
- ( SPEAKING FOREIGN LANGUAGE )
- [DAVID] Hey there,
keeping basic punctuations like commas, periods, question marks, exclamation points, etc.
"""
symbols = list("\"#()*+/:;<=>@[\\]^_`{|}~「」『』")
symbols += "<< >> <<< >>> -- --- -( -[ (' (\" (( )) ((( ))) [[ ]] {{ }} ♪♪ ♪♪♪".split()
# symbols that may be a single token or multiple tokens depending on the tokenizer.
# In case they're multiple tokens, suppress the first token, which is safe because:
# These are between U+2640 and U+267F miscellaneous symbols that are okay to suppress
# in generations, and in the 3-byte UTF-8 representation they share the first two bytes.
miscellaneous = set("♩♪♫♬♭♮♯")
assert all(0x2640 <= ord(c) <= 0x267F for c in miscellaneous)
# allow hyphens "-" and single quotes "'" between words, but not at the beginning of a word
result = {self.tokenizer.encode(" -")[0], self.tokenizer.encode(" '")[0]}
for symbol in symbols + list(miscellaneous):
for tokens in [self.tokenizer.encode(symbol), self.tokenizer.encode(" " + symbol)]:
if len(tokens) == 1 or symbol in miscellaneous:
result.add(tokens[0])
return tuple(sorted(result))
def _get_single_token_id(self, text) -> int:
tokens = self.tokenizer.encode(text)
assert len(tokens) == 1, f"{text} is not encoded as a single token"
return tokens[0]
@lru_cache(maxsize=None)
def build_tokenizer(name: str = "gpt2"):
os.environ["TOKENIZERS_PARALLELISM"] = "false"
path = os.path.join(os.path.dirname(__file__), "assets", name)
tokenizer = GPT2TokenizerFast.from_pretrained(path)
specials = [
"<|startoftranscript|>",
*[f"<|{lang}|>" for lang in LANGUAGES.keys()],
"<|translate|>",
"<|transcribe|>",
"<|startoflm|>",
"<|startofprev|>",
"<|nospeech|>",
"<|notimestamps|>",
]
tokenizer.add_special_tokens(dict(additional_special_tokens=specials))
return tokenizer
@lru_cache(maxsize=None)
def get_tokenizer(
multilingual: bool,
*,
task: Optional[str] = None, # Literal["transcribe", "translate", None]
language: Optional[str] = None,
) -> Tokenizer:
if language is not None:
language = language.lower()
if language not in LANGUAGES:
if language in TO_LANGUAGE_CODE:
language = TO_LANGUAGE_CODE[language]
else:
raise ValueError(f"Unsupported language: {language}")
if multilingual:
tokenizer_name = "multilingual"
task = task or "transcribe"
language = language or "en"
else:
tokenizer_name = "gpt2"
task = None
language = None
tokenizer = build_tokenizer(name=tokenizer_name)
all_special_ids: List[int] = tokenizer.all_special_ids
sot: int = all_special_ids[1]
translate: int = all_special_ids[-6]
transcribe: int = all_special_ids[-5]
langs = tuple(LANGUAGES.keys())
sot_sequence = [sot]
if language is not None:
sot_sequence.append(sot + 1 + langs.index(language))
if task is not None:
sot_sequence.append(transcribe if task == "transcribe" else translate)
return Tokenizer(tokenizer=tokenizer, language=language, sot_sequence=tuple(sot_sequence))

View File

@ -0,0 +1,207 @@
import argparse
import os
import warnings
from typing import List, Optional, Tuple, Union, TYPE_CHECKING
import numpy as np
import torch
import tqdm
from .audio import SAMPLE_RATE, N_FRAMES, HOP_LENGTH, pad_or_trim, log_mel_spectrogram
from .decoding import DecodingOptions, DecodingResult
from .tokenizer import LANGUAGES, TO_LANGUAGE_CODE, get_tokenizer
from .utils import exact_div, format_timestamp, optional_int, optional_float, str2bool, write_txt, write_vtt, write_srt
if TYPE_CHECKING:
from .model import Whisper
def transcribe(
model: "Whisper",
audio: Union[str, np.ndarray, torch.Tensor],
*,
verbose: Optional[bool] = None,
temperature: Union[float, Tuple[float, ...]] = (0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
compression_ratio_threshold: Optional[float] = 2.4,
logprob_threshold: Optional[float] = -1.0,
no_speech_threshold: Optional[float] = 0.6,
condition_on_previous_text: bool = True,
force_extraction: bool = False,
**decode_options,
):
"""
Transcribe an audio file using Whisper
Parameters
----------
model: Whisper
The Whisper model instance
audio: Union[str, np.ndarray, torch.Tensor]
The path to the audio file to open, or the audio waveform
verbose: bool
Whether to display the text being decoded to the console. If True, displays all the details,
If False, displays minimal details. If None, does not display anything
temperature: Union[float, Tuple[float, ...]]
Temperature for sampling. It can be a tuple of temperatures, which will be successfully used
upon failures according to either `compression_ratio_threshold` or `logprob_threshold`.
compression_ratio_threshold: float
If the gzip compression ratio is above this value, treat as failed
logprob_threshold: float
If the average log probability over sampled tokens is below this value, treat as failed
no_speech_threshold: float
If the no_speech probability is higher than this value AND the average log probability
over sampled tokens is below `logprob_threshold`, consider the segment as silent
condition_on_previous_text: bool
if True, the previous output of the model is provided as a prompt for the next window;
disabling may make the text inconsistent across windows, but the model becomes less prone to
getting stuck in a failure loop, such as repetition looping or timestamps going out of sync.
decode_options: dict
Keyword arguments to construct `DecodingOptions` instances
Returns
-------
A dictionary containing the resulting text ("text") and segment-level details ("segments"), and
the spoken language ("language"), which is detected when `decode_options["language"]` is None.
"""
dtype = torch.float16 if decode_options.get("fp16", True) else torch.float32
if model.device == torch.device("cpu"):
if torch.cuda.is_available():
warnings.warn("Performing inference on CPU when CUDA is available")
if dtype == torch.float16:
warnings.warn("FP16 is not supported on CPU; using FP32 instead")
dtype = torch.float32
if dtype == torch.float32:
decode_options["fp16"] = False
mel = log_mel_spectrogram(audio)
all_segments = []
def add_segment(
*, start: float, end: float, encoder_embeddings
):
all_segments.append(
{
"start": start,
"end": end,
"encoder_embeddings":encoder_embeddings,
}
)
# show the progress bar when verbose is False (otherwise the transcribed text will be printed)
num_frames = mel.shape[-1]
seek = 0
previous_seek_value = seek
sample_skip = 3000 #
with tqdm.tqdm(total=num_frames, unit='frames', disable=verbose is not False) as pbar:
while seek < num_frames:
# seek是开始的帧数
end_seek = min(seek + sample_skip, num_frames)
segment = pad_or_trim(mel[:,seek:seek+sample_skip], N_FRAMES).to(model.device).to(dtype)
single = segment.ndim == 2
if single:
segment = segment.unsqueeze(0)
if dtype == torch.float16:
segment = segment.half()
audio_features, embeddings = model.encoder(segment, include_embeddings = True)
encoder_embeddings = embeddings
#print(f"encoder_embeddings shape {encoder_embeddings.shape}")
add_segment(
start=seek,
end=end_seek,
#text_tokens=tokens,
#result=result,
encoder_embeddings=encoder_embeddings,
)
seek+=sample_skip
return dict(segments=all_segments)
def cli():
from . import available_models
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("audio", nargs="+", type=str, help="audio file(s) to transcribe")
parser.add_argument("--model", default="small", choices=available_models(), help="name of the Whisper model to use")
parser.add_argument("--model_dir", type=str, default=None, help="the path to save model files; uses ~/.cache/whisper by default")
parser.add_argument("--device", default="cuda" if torch.cuda.is_available() else "cpu", help="device to use for PyTorch inference")
parser.add_argument("--output_dir", "-o", type=str, default=".", help="directory to save the outputs")
parser.add_argument("--verbose", type=str2bool, default=True, help="whether to print out the progress and debug messages")
parser.add_argument("--task", type=str, default="transcribe", choices=["transcribe", "translate"], help="whether to perform X->X speech recognition ('transcribe') or X->English translation ('translate')")
parser.add_argument("--language", type=str, default=None, choices=sorted(LANGUAGES.keys()) + sorted([k.title() for k in TO_LANGUAGE_CODE.keys()]), help="language spoken in the audio, specify None to perform language detection")
parser.add_argument("--temperature", type=float, default=0, help="temperature to use for sampling")
parser.add_argument("--best_of", type=optional_int, default=5, help="number of candidates when sampling with non-zero temperature")
parser.add_argument("--beam_size", type=optional_int, default=5, help="number of beams in beam search, only applicable when temperature is zero")
parser.add_argument("--patience", type=float, default=None, help="optional patience value to use in beam decoding, as in https://arxiv.org/abs/2204.05424, the default (1.0) is equivalent to conventional beam search")
parser.add_argument("--length_penalty", type=float, default=None, help="optional token length penalty coefficient (alpha) as in https://arxiv.org/abs/1609.08144, uses simple length normalization by default")
parser.add_argument("--suppress_tokens", type=str, default="-1", help="comma-separated list of token ids to suppress during sampling; '-1' will suppress most special characters except common punctuations")
parser.add_argument("--initial_prompt", type=str, default=None, help="optional text to provide as a prompt for the first window.")
parser.add_argument("--condition_on_previous_text", type=str2bool, default=True, help="if True, provide the previous output of the model as a prompt for the next window; disabling may make the text inconsistent across windows, but the model becomes less prone to getting stuck in a failure loop")
parser.add_argument("--fp16", type=str2bool, default=True, help="whether to perform inference in fp16; True by default")
parser.add_argument("--temperature_increment_on_fallback", type=optional_float, default=0.2, help="temperature to increase when falling back when the decoding fails to meet either of the thresholds below")
parser.add_argument("--compression_ratio_threshold", type=optional_float, default=2.4, help="if the gzip compression ratio is higher than this value, treat the decoding as failed")
parser.add_argument("--logprob_threshold", type=optional_float, default=-1.0, help="if the average log probability is lower than this value, treat the decoding as failed")
parser.add_argument("--no_speech_threshold", type=optional_float, default=0.6, help="if the probability of the <|nospeech|> token is higher than this value AND the decoding has failed due to `logprob_threshold`, consider the segment as silence")
parser.add_argument("--threads", type=optional_int, default=0, help="number of threads used by torch for CPU inference; supercedes MKL_NUM_THREADS/OMP_NUM_THREADS")
args = parser.parse_args().__dict__
model_name: str = args.pop("model")
model_dir: str = args.pop("model_dir")
output_dir: str = args.pop("output_dir")
device: str = args.pop("device")
os.makedirs(output_dir, exist_ok=True)
if model_name.endswith(".en") and args["language"] not in {"en", "English"}:
if args["language"] is not None:
warnings.warn(f"{model_name} is an English-only model but receipted '{args['language']}'; using English instead.")
args["language"] = "en"
temperature = args.pop("temperature")
temperature_increment_on_fallback = args.pop("temperature_increment_on_fallback")
if temperature_increment_on_fallback is not None:
temperature = tuple(np.arange(temperature, 1.0 + 1e-6, temperature_increment_on_fallback))
else:
temperature = [temperature]
threads = args.pop("threads")
if threads > 0:
torch.set_num_threads(threads)
from . import load_model
model = load_model(model_name, device=device, download_root=model_dir)
for audio_path in args.pop("audio"):
result = transcribe(model, audio_path, temperature=temperature, **args)
audio_basename = os.path.basename(audio_path)
# save TXT
with open(os.path.join(output_dir, audio_basename + ".txt"), "w", encoding="utf-8") as txt:
write_txt(result["segments"], file=txt)
# save VTT
with open(os.path.join(output_dir, audio_basename + ".vtt"), "w", encoding="utf-8") as vtt:
write_vtt(result["segments"], file=vtt)
# save SRT
with open(os.path.join(output_dir, audio_basename + ".srt"), "w", encoding="utf-8") as srt:
write_srt(result["segments"], file=srt)
if __name__ == '__main__':
cli()

View File

@ -0,0 +1,87 @@
import zlib
from typing import Iterator, TextIO
def exact_div(x, y):
assert x % y == 0
return x // y
def str2bool(string):
str2val = {"True": True, "False": False}
if string in str2val:
return str2val[string]
else:
raise ValueError(f"Expected one of {set(str2val.keys())}, got {string}")
def optional_int(string):
return None if string == "None" else int(string)
def optional_float(string):
return None if string == "None" else float(string)
def compression_ratio(text) -> float:
return len(text) / len(zlib.compress(text.encode("utf-8")))
def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = '.'):
assert seconds >= 0, "non-negative timestamp expected"
milliseconds = round(seconds * 1000.0)
hours = milliseconds // 3_600_000
milliseconds -= hours * 3_600_000
minutes = milliseconds // 60_000
milliseconds -= minutes * 60_000
seconds = milliseconds // 1_000
milliseconds -= seconds * 1_000
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
def write_txt(transcript: Iterator[dict], file: TextIO):
for segment in transcript:
print(segment['text'].strip(), file=file, flush=True)
def write_vtt(transcript: Iterator[dict], file: TextIO):
print("WEBVTT\n", file=file)
for segment in transcript:
print(
f"{format_timestamp(segment['start'])} --> {format_timestamp(segment['end'])}\n"
f"{segment['text'].strip().replace('-->', '->')}\n",
file=file,
flush=True,
)
def write_srt(transcript: Iterator[dict], file: TextIO):
"""
Write a transcript to a file in SRT format.
Example usage:
from pathlib import Path
from whisper.utils import write_srt
result = transcribe(model, audio_path, temperature=temperature, **args)
# save SRT
audio_basename = Path(audio_path).stem
with open(Path(output_dir) / (audio_basename + ".srt"), "w", encoding="utf-8") as srt:
write_srt(result["segments"], file=srt)
"""
for i, segment in enumerate(transcript, start=1):
# write srt lines
print(
f"{i}\n"
f"{format_timestamp(segment['start'], always_include_hours=True, decimal_marker=',')} --> "
f"{format_timestamp(segment['end'], always_include_hours=True, decimal_marker=',')}\n"
f"{segment['text'].strip().replace('-->', '->')}\n",
file=file,
flush=True,
)