diff --git a/app2.py b/app2.py new file mode 100644 index 0000000..fab2797 --- /dev/null +++ b/app2.py @@ -0,0 +1,375 @@ +# server.py +from flask import Flask, request, jsonify +from flask_sockets import Sockets +import base64 +import time +import json +import gevent +from gevent import pywsgi +from geventwebsocket.handler import WebSocketHandler +import os +import re +import numpy as np +from threading import Thread +import multiprocessing + +import argparse +from nerf_triplane.provider import NeRFDataset_Test +from nerf_triplane.utils import * +from nerf_triplane.network import NeRFNetwork +from nerfreal import NeRFReal + +import shutil +import asyncio +import edge_tts +from typing import Iterator + +import requests + +app = Flask(__name__) +sockets = Sockets(app) +global nerfreal +global tts_type +global gspeaker + + +async def main(voicename: str, text: str, render): + communicate = edge_tts.Communicate(text, voicename) + + #with open(OUTPUT_FILE, "wb") as file: + first = True + async for chunk in communicate.stream(): + if first: + #render.before_push_audio() + first = False + if chunk["type"] == "audio": + render.push_audio(chunk["data"]) + #file.write(chunk["data"]) + elif chunk["type"] == "WordBoundary": + pass + +def get_speaker(ref_audio,server_url): + files = {"wav_file": ("reference.wav", open(ref_audio, "rb"))} + response = requests.post(f"{server_url}/clone_speaker", files=files) + return response.json() + +def xtts(text, speaker, language, server_url, stream_chunk_size) -> Iterator[bytes]: + start = time.perf_counter() + speaker["text"] = text + speaker["language"] = language + speaker["stream_chunk_size"] = stream_chunk_size # you can reduce it to get faster response, but degrade quality + res = requests.post( + f"{server_url}/tts_stream", + json=speaker, + stream=True, + ) + end = time.perf_counter() + print(f"xtts Time to make POST: {end-start}s") + + if res.status_code != 200: + print("Error:", res.text) + return + + first = True + for chunk in res.iter_content(chunk_size=960): + if first: + end = time.perf_counter() + print(f"xtts Time to first chunk: {end-start}s") + first = False + if chunk: + yield chunk + + print("xtts response.elapsed:", res.elapsed) + +def gpt_sovits(text, speaker, language, server_url, stream_chunk_size) -> Iterator[bytes]: + start = time.perf_counter() + speaker["text"] = text + speaker["language"] = language + speaker["stream_chunk_size"] = stream_chunk_size # you can reduce it to get faster response, but degrade quality + res = requests.get(f"{server_url}&text="+text,stream=True) + end = time.perf_counter() + print(f"xtts Time to make POST: {end-start}s") + + if res.status_code != 200: + print("Error:", res.text) + return + + first = True + for chunk in res.iter_content(chunk_size=960): + if first: + end = time.perf_counter() + print(f"xtts Time to first chunk: {end-start}s") + first = False + if chunk: + yield chunk + + print("xtts response.elapsed:", res.elapsed) + +def stream_xtts(audio_stream,render): + for chunk in audio_stream: + if chunk is not None: + render.push_audio(chunk) + +def txt_to_audio(text_): + if tts_type == "edgetts": + voicename = "zh-CN-YunxiaNeural" + text = text_ + t = time.time() + asyncio.get_event_loop().run_until_complete(main(voicename,text,nerfreal)) + print(f'-------edge tts time:{time.time()-t:.4f}s') + elif tts_type == "gpt": #xtts + stream_xtts( + gpt_sovits( + text_, + gspeaker, + "zh-cn", #en args.language, + "http://127.0.0.1:9880/tts_ava?ava=maimai&streaming_mode=true", #args.server_url, + "20" #args.stream_chunk_size + ), + nerfreal + ) + else :#xtts + stream_xtts( + xtts( + text_, + gspeaker, + "zh-cn", #en args.language, + "http://localhost:9000", #args.server_url, + "20" #args.stream_chunk_size + ), + nerfreal + ) +@sockets.route('/humanecho') +def echo_socket(ws): + # 获取WebSocket对象 + #ws = request.environ.get('wsgi.websocket') + # 如果没有获取到,返回错误信息 + if not ws: + print('未建立连接!') + return 'Please use WebSocket' + # 否则,循环接收和发送消息 + else: + print('建立连接!') + while True: + message = ws.receive() + + if not message or len(message)==0: + return '输入信息为空' + else: + txt_to_audio(message) + + +def llm_response(message): + from llm.LLM import LLM + # llm = LLM().init_model('Gemini', model_path= 'gemini-pro',api_key='Your API Key', proxy_url=None) + # llm = LLM().init_model('ChatGPT', model_path= 'gpt-3.5-turbo',api_key='Your API Key') + llm = LLM().init_model('VllmGPT', model_path= 'THUDM/chatglm3-6b') + response = llm.chat(message) + print(response) + return response + +@sockets.route('/humanchat') +def chat_socket(ws): + # 获取WebSocket对象 + #ws = request.environ.get('wsgi.websocket') + # 如果没有获取到,返回错误信息 + if not ws: + print('未建立连接!') + return 'Please use WebSocket' + # 否则,循环接收和发送消息 + else: + print('建立连接!') + while True: + message = ws.receive() + + if len(message)==0: + return '输入信息为空' + else: + res=llm_response(message) + txt_to_audio(res) + +def render(): + nerfreal.render() + + +if __name__ == '__main__': + + parser = argparse.ArgumentParser() + parser.add_argument('--pose', type=str, default="data/data_kf.json", help="transforms.json, pose source") + parser.add_argument('--au', type=str, default="data/au.csv", help="eye blink area") + parser.add_argument('--torso_imgs', type=str, default="", help="torso images path") + + parser.add_argument('-O', action='store_true', help="equals --fp16 --cuda_ray --exp_eye") + + parser.add_argument('--data_range', type=int, nargs='*', default=[0, -1], help="data range to use") + parser.add_argument('--workspace', type=str, default='data/video') + parser.add_argument('--seed', type=int, default=0) + + ### training options + parser.add_argument('--ckpt', type=str, default='data/pretrained/ngp_kf.pth') + + parser.add_argument('--num_rays', type=int, default=4096 * 16, help="num rays sampled per image for each training step") + parser.add_argument('--cuda_ray', action='store_true', help="use CUDA raymarching instead of pytorch") + parser.add_argument('--max_steps', type=int, default=16, help="max num steps sampled per ray (only valid when using --cuda_ray)") + parser.add_argument('--num_steps', type=int, default=16, help="num steps sampled per ray (only valid when NOT using --cuda_ray)") + parser.add_argument('--upsample_steps', type=int, default=0, help="num steps up-sampled per ray (only valid when NOT using --cuda_ray)") + parser.add_argument('--update_extra_interval', type=int, default=16, help="iter interval to update extra status (only valid when using --cuda_ray)") + parser.add_argument('--max_ray_batch', type=int, default=4096, help="batch size of rays at inference to avoid OOM (only valid when NOT using --cuda_ray)") + + ### loss set + parser.add_argument('--warmup_step', type=int, default=10000, help="warm up steps") + parser.add_argument('--amb_aud_loss', type=int, default=1, help="use ambient aud loss") + parser.add_argument('--amb_eye_loss', type=int, default=1, help="use ambient eye loss") + parser.add_argument('--unc_loss', type=int, default=1, help="use uncertainty loss") + parser.add_argument('--lambda_amb', type=float, default=1e-4, help="lambda for ambient loss") + + ### network backbone options + parser.add_argument('--fp16', action='store_true', help="use amp mixed precision training") + + parser.add_argument('--bg_img', type=str, default='white', help="background image") + parser.add_argument('--fbg', action='store_true', help="frame-wise bg") + parser.add_argument('--exp_eye', action='store_true', help="explicitly control the eyes") + parser.add_argument('--fix_eye', type=float, default=-1, help="fixed eye area, negative to disable, set to 0-0.3 for a reasonable eye") + parser.add_argument('--smooth_eye', action='store_true', help="smooth the eye area sequence") + + parser.add_argument('--torso_shrink', type=float, default=0.8, help="shrink bg coords to allow more flexibility in deform") + + ### dataset options + parser.add_argument('--color_space', type=str, default='srgb', help="Color space, supports (linear, srgb)") + parser.add_argument('--preload', type=int, default=0, help="0 means load data from disk on-the-fly, 1 means preload to CPU, 2 means GPU.") + # (the default value is for the fox dataset) + parser.add_argument('--bound', type=float, default=1, help="assume the scene is bounded in box[-bound, bound]^3, if > 1, will invoke adaptive ray marching.") + parser.add_argument('--scale', type=float, default=4, help="scale camera location into box[-bound, bound]^3") + parser.add_argument('--offset', type=float, nargs='*', default=[0, 0, 0], help="offset of camera location") + parser.add_argument('--dt_gamma', type=float, default=1/256, help="dt_gamma (>=0) for adaptive ray marching. set to 0 to disable, >0 to accelerate rendering (but usually with worse quality)") + parser.add_argument('--min_near', type=float, default=0.05, help="minimum near distance for camera") + parser.add_argument('--density_thresh', type=float, default=10, help="threshold for density grid to be occupied (sigma)") + parser.add_argument('--density_thresh_torso', type=float, default=0.01, help="threshold for density grid to be occupied (alpha)") + parser.add_argument('--patch_size', type=int, default=1, help="[experimental] render patches in training, so as to apply LPIPS loss. 1 means disabled, use [64, 32, 16] to enable") + + parser.add_argument('--init_lips', action='store_true', help="init lips region") + parser.add_argument('--finetune_lips', action='store_true', help="use LPIPS and landmarks to fine tune lips region") + parser.add_argument('--smooth_lips', action='store_true', help="smooth the enc_a in a exponential decay way...") + + parser.add_argument('--torso', action='store_true', help="fix head and train torso") + parser.add_argument('--head_ckpt', type=str, default='', help="head model") + + ### GUI options + parser.add_argument('--gui', action='store_true', help="start a GUI") + parser.add_argument('--W', type=int, default=450, help="GUI width") + parser.add_argument('--H', type=int, default=450, help="GUI height") + parser.add_argument('--radius', type=float, default=3.35, help="default GUI camera radius from center") + parser.add_argument('--fovy', type=float, default=21.24, help="default GUI camera fovy") + parser.add_argument('--max_spp', type=int, default=1, help="GUI rendering max sample per pixel") + + ### else + parser.add_argument('--att', type=int, default=2, help="audio attention mode (0 = turn off, 1 = left-direction, 2 = bi-direction)") + parser.add_argument('--aud', type=str, default='', help="audio source (empty will load the default, else should be a path to a npy file)") + parser.add_argument('--emb', action='store_true', help="use audio class + embedding instead of logits") + + parser.add_argument('--ind_dim', type=int, default=4, help="individual code dim, 0 to turn off") + parser.add_argument('--ind_num', type=int, default=10000, help="number of individual codes, should be larger than training dataset size") + + parser.add_argument('--ind_dim_torso', type=int, default=8, help="individual code dim, 0 to turn off") + + parser.add_argument('--amb_dim', type=int, default=2, help="ambient dimension") + parser.add_argument('--part', action='store_true', help="use partial training data (1/10)") + parser.add_argument('--part2', action='store_true', help="use partial training data (first 15s)") + + parser.add_argument('--train_camera', action='store_true', help="optimize camera pose") + parser.add_argument('--smooth_path', action='store_true', help="brute-force smooth camera pose trajectory with a window size") + parser.add_argument('--smooth_path_window', type=int, default=7, help="smoothing window size") + + # asr + parser.add_argument('--asr', action='store_true', help="load asr for real-time app") + parser.add_argument('--asr_wav', type=str, default='', help="load the wav and use as input") + parser.add_argument('--asr_play', action='store_true', help="play out the audio") + + #parser.add_argument('--asr_model', type=str, default='deepspeech') + parser.add_argument('--asr_model', type=str, default='cpierse/wav2vec2-large-xlsr-53-esperanto') # + # parser.add_argument('--asr_model', type=str, default='facebook/wav2vec2-large-960h-lv60-self') + # parser.add_argument('--asr_model', type=str, default='facebook/hubert-large-ls960-ft') + + parser.add_argument('--push_url', type=str, default='rtmp://localhost/live/livestream') + + parser.add_argument('--asr_save_feats', action='store_true') + # audio FPS + parser.add_argument('--fps', type=int, default=50) + # sliding window left-middle-right length (unit: 20ms) + parser.add_argument('-l', type=int, default=10) + parser.add_argument('-m', type=int, default=8) + parser.add_argument('-r', type=int, default=10) + + parser.add_argument('--fullbody', action='store_true', help="fullbody human") + parser.add_argument('--fullbody_img', type=str, default='data/fullbody/img') + parser.add_argument('--fullbody_width', type=int, default=580) + parser.add_argument('--fullbody_height', type=int, default=1080) + parser.add_argument('--fullbody_offset_x', type=int, default=0) + parser.add_argument('--fullbody_offset_y', type=int, default=0) + + parser.add_argument('--tts', type=str, default='edgetts') #xtts + parser.add_argument('--ref_file', type=str, default=None) + parser.add_argument('--xtts_server', type=str, default='http://localhost:9000') + + opt = parser.parse_args() + app.config.from_object(opt) + #print(app.config['xtts_server']) + + tts_type = opt.tts + if tts_type == "xtts": + print("Computing the latents for a new reference...") + gspeaker = get_speaker(opt.ref_file, opt.xtts_server) + + # assert test mode + opt.test = True + opt.test_train = False + #opt.train_camera =True + # explicit smoothing + opt.smooth_path = True + opt.smooth_lips = True + + assert opt.pose != '', 'Must provide a pose source' + + # if opt.O: + opt.fp16 = True + opt.cuda_ray = True + opt.exp_eye = True + opt.smooth_eye = True + + if opt.torso_imgs=='': #no img,use model output + opt.torso = True + + # assert opt.cuda_ray, "Only support CUDA ray mode." + opt.asr = True + + if opt.patch_size > 1: + # assert opt.patch_size > 16, "patch_size should > 16 to run LPIPS loss." + assert opt.num_rays % (opt.patch_size ** 2) == 0, "patch_size ** 2 should be dividable by num_rays." + seed_everything(opt.seed) + print(opt) + + device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') + model = NeRFNetwork(opt) + + criterion = torch.nn.MSELoss(reduction='none') + metrics = [] # use no metric in GUI for faster initialization... + print(model) + trainer = Trainer('ngp', opt, model, device=device, workspace=opt.workspace, criterion=criterion, fp16=opt.fp16, metrics=metrics, use_checkpoint=opt.ckpt) + + test_loader = NeRFDataset_Test(opt, device=device).dataloader() + model.aud_features = test_loader._data.auds + model.eye_areas = test_loader._data.eye_area + + # we still need test_loader to provide audio features for testing. + nerfreal = NeRFReal(opt, trainer, test_loader) + #txt_to_audio('我是中国人,我来自北京') + rendthrd = Thread(target=render) + rendthrd.start() + + ############################################################################# + print('start websocket server') + + server = pywsgi.WSGIServer(('0.0.0.0', 8000), app, handler_class=WebSocketHandler) + server.serve_forever() + + \ No newline at end of file