improve musetalk infer speed
This commit is contained in:
parent
016442272e
commit
d01860176e
15
README.md
15
README.md
|
@ -177,12 +177,12 @@ docker run --gpus all -it --network=host --rm registry.cn-hangzhou.aliyuncs.com
|
||||||
```
|
```
|
||||||
docker版本已经不是最新代码,可以作为一个空环境,把最新代码拷进去运行。
|
docker版本已经不是最新代码,可以作为一个空环境,把最新代码拷进去运行。
|
||||||
|
|
||||||
另外提供autodl教程:
|
另外提供autodl镜像:
|
||||||
|
https://www.codewithgpu.com/i/lipku/metahuman-stream/base
|
||||||
[autodl教程](autodl/README.md)
|
[autodl教程](autodl/README.md)
|
||||||
## 5. Data flow
|
|
||||||

|
|
||||||
|
|
||||||
## 6. 数字人模型文件
|
|
||||||
|
## 5. 数字人模型文件
|
||||||
可以替换成自己训练的模型(https://github.com/Fictionarry/ER-NeRF)
|
可以替换成自己训练的模型(https://github.com/Fictionarry/ER-NeRF)
|
||||||
```python
|
```python
|
||||||
.
|
.
|
||||||
|
@ -194,7 +194,7 @@ docker版本已经不是最新代码,可以作为一个空环境,把最新
|
||||||
|
|
||||||
```
|
```
|
||||||
|
|
||||||
## 7. 性能分析
|
## 6. 性能分析
|
||||||
1. 帧率
|
1. 帧率
|
||||||
在Tesla T4显卡上测试整体fps为18左右,如果去掉音视频编码推流,帧率在20左右。用4090显卡可以达到40多帧/秒。
|
在Tesla T4显卡上测试整体fps为18左右,如果去掉音视频编码推流,帧率在20左右。用4090显卡可以达到40多帧/秒。
|
||||||
优化:新开一个线程运行音视频编码推流
|
优化:新开一个线程运行音视频编码推流
|
||||||
|
@ -204,7 +204,7 @@ docker版本已经不是最新代码,可以作为一个空环境,把最新
|
||||||
(2)wav2vec延时0.4s,需要缓存18帧音频做计算
|
(2)wav2vec延时0.4s,需要缓存18帧音频做计算
|
||||||
(3)srs转发延时,设置srs服务器减少缓冲延时。具体配置可看 https://ossrs.net/lts/zh-cn/docs/v5/doc/low-latency
|
(3)srs转发延时,设置srs服务器减少缓冲延时。具体配置可看 https://ossrs.net/lts/zh-cn/docs/v5/doc/low-latency
|
||||||
|
|
||||||
## 8. TODO
|
## 7. TODO
|
||||||
- [x] 添加chatgpt实现数字人对话
|
- [x] 添加chatgpt实现数字人对话
|
||||||
- [x] 声音克隆
|
- [x] 声音克隆
|
||||||
- [x] 数字人静音时用一段视频代替
|
- [x] 数字人静音时用一段视频代替
|
||||||
|
@ -215,5 +215,4 @@ docker版本已经不是最新代码,可以作为一个空环境,把最新
|
||||||
知识星球: https://t.zsxq.com/7NMyO
|
知识星球: https://t.zsxq.com/7NMyO
|
||||||
微信公众号:数字人技术
|
微信公众号:数字人技术
|
||||||

|

|
||||||
Buy me a coffee
|
|
||||||

|
|
||||||
|
|
5
app.py
5
app.py
|
@ -164,9 +164,10 @@ async def run(push_url):
|
||||||
answer = await post(push_url,pc.localDescription.sdp)
|
answer = await post(push_url,pc.localDescription.sdp)
|
||||||
await pc.setRemoteDescription(RTCSessionDescription(sdp=answer,type='answer'))
|
await pc.setRemoteDescription(RTCSessionDescription(sdp=answer,type='answer'))
|
||||||
##########################################
|
##########################################
|
||||||
|
# os.environ['MKL_SERVICE_FORCE_INTEL'] = '1'
|
||||||
|
# os.environ['MULTIPROCESSING_METHOD'] = 'forkserver'
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
multiprocessing.set_start_method('spawn')
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument('--pose', type=str, default="data/data_kf.json", help="transforms.json, pose source")
|
parser.add_argument('--pose', type=str, default="data/data_kf.json", help="transforms.json, pose source")
|
||||||
parser.add_argument('--au', type=str, default="data/au.csv", help="eye blink area")
|
parser.add_argument('--au', type=str, default="data/au.csv", help="eye blink area")
|
||||||
|
|
|
@ -51,8 +51,7 @@ var url = "http://公网ip:1985/rtc/v1/whep/?app=live&stream=livestream"
|
||||||

|

|
||||||
|
|
||||||
## 注意事项
|
## 注意事项
|
||||||
1.autodl 如果是个人用户需要使用官方的ssh代理工具进行端口代理,才可以访问6006
|
1. autodl 如果是个人用户需要使用官方的ssh代理工具进行端口代理,才可以访问6006
|
||||||
2.基础环境镜像中如果想使用musetalk环境,还需要自己操作
|
2. 声音延迟需要后台优化srs的功能
|
||||||
3.声音延迟需要后台优化srs的功能
|
3. musetalk 暂不支持rtmp推流 但是支持rtcpush
|
||||||
4.musetalk 暂不支持rtmp推流 但是支持rtcpush
|
4. musetalk 教程即将更新
|
||||||
5.musetalk 教程即将更新
|
|
14
museasr.py
14
museasr.py
|
@ -7,6 +7,7 @@ import resampy
|
||||||
import queue
|
import queue
|
||||||
from queue import Queue
|
from queue import Queue
|
||||||
from io import BytesIO
|
from io import BytesIO
|
||||||
|
import multiprocessing as mp
|
||||||
|
|
||||||
from musetalk.whisper.audio2feature import Audio2Feature
|
from musetalk.whisper.audio2feature import Audio2Feature
|
||||||
|
|
||||||
|
@ -19,13 +20,14 @@ class MuseASR:
|
||||||
self.chunk = self.sample_rate // self.fps # 320 samples per chunk (20ms * 16000 / 1000)
|
self.chunk = self.sample_rate // self.fps # 320 samples per chunk (20ms * 16000 / 1000)
|
||||||
self.queue = Queue()
|
self.queue = Queue()
|
||||||
# self.input_stream = BytesIO()
|
# self.input_stream = BytesIO()
|
||||||
self.output_queue = Queue()
|
self.output_queue = mp.Queue()
|
||||||
|
|
||||||
self.audio_processor = audio_processor
|
self.audio_processor = audio_processor
|
||||||
self.batch_size = opt.batch_size
|
self.batch_size = opt.batch_size
|
||||||
|
|
||||||
self.stride_left_size = self.stride_right_size = 6
|
self.stride_left_size = self.stride_right_size = 6
|
||||||
self.audio_feats = []
|
self.audio_feats = []
|
||||||
|
self.feat_queue = mp.Queue(5)
|
||||||
|
|
||||||
self.warm_up()
|
self.warm_up()
|
||||||
|
|
||||||
|
@ -34,7 +36,7 @@ class MuseASR:
|
||||||
|
|
||||||
def __get_audio_frame(self):
|
def __get_audio_frame(self):
|
||||||
try:
|
try:
|
||||||
frame = self.queue.get(block=True,timeout=0.02)
|
frame = self.queue.get(block=True,timeout=0.018)
|
||||||
type = 0
|
type = 0
|
||||||
#print(f'[INFO] get frame {frame.shape}')
|
#print(f'[INFO] get frame {frame.shape}')
|
||||||
except queue.Empty:
|
except queue.Empty:
|
||||||
|
@ -72,11 +74,11 @@ class MuseASR:
|
||||||
whisper_feature = self.audio_processor.audio2feat(inputs)
|
whisper_feature = self.audio_processor.audio2feat(inputs)
|
||||||
for feature in whisper_feature:
|
for feature in whisper_feature:
|
||||||
self.audio_feats.append(feature)
|
self.audio_feats.append(feature)
|
||||||
|
|
||||||
#print(f"processing audio costs {(time.time() - start_time) * 1000}ms, inputs shape:{inputs.shape} whisper_feature len:{len(whisper_feature)}")
|
#print(f"processing audio costs {(time.time() - start_time) * 1000}ms, inputs shape:{inputs.shape} whisper_feature len:{len(whisper_feature)}")
|
||||||
|
|
||||||
def get_next_feat(self):
|
|
||||||
whisper_chunks = self.audio_processor.feature2chunks(feature_array=self.audio_feats,fps=self.fps/2,batch_size=self.batch_size,start=self.stride_left_size/2 )
|
whisper_chunks = self.audio_processor.feature2chunks(feature_array=self.audio_feats,fps=self.fps/2,batch_size=self.batch_size,start=self.stride_left_size/2 )
|
||||||
#print(f"whisper_chunks len:{len(whisper_chunks)},self.audio_feats len:{len(self.audio_feats)},self.output_queue len:{self.output_queue.qsize()}")
|
#print(f"whisper_chunks len:{len(whisper_chunks)},self.audio_feats len:{len(self.audio_feats)},self.output_queue len:{self.output_queue.qsize()}")
|
||||||
self.audio_feats = self.audio_feats[-(self.stride_left_size + self.stride_right_size):]
|
self.audio_feats = self.audio_feats[-(self.stride_left_size + self.stride_right_size):]
|
||||||
return whisper_chunks
|
self.feat_queue.put(whisper_chunks)
|
||||||
|
|
||||||
|
def get_next_feat(self,block,timeout):
|
||||||
|
return self.feat_queue.get(block,timeout)
|
181
musereal.py
181
musereal.py
|
@ -16,9 +16,10 @@ import queue
|
||||||
from queue import Queue
|
from queue import Queue
|
||||||
from threading import Thread, Event
|
from threading import Thread, Event
|
||||||
from io import BytesIO
|
from io import BytesIO
|
||||||
|
import multiprocessing as mp
|
||||||
|
|
||||||
from musetalk.utils.utils import get_file_type,get_video_fps,datagen
|
from musetalk.utils.utils import get_file_type,get_video_fps,datagen
|
||||||
from musetalk.utils.preprocessing import get_landmark_and_bbox,read_imgs,coord_placeholder
|
#from musetalk.utils.preprocessing import get_landmark_and_bbox,read_imgs,coord_placeholder
|
||||||
from musetalk.utils.blending import get_image,get_image_prepare_material,get_image_blending
|
from musetalk.utils.blending import get_image,get_image_prepare_material,get_image_blending
|
||||||
from musetalk.utils.utils import load_all_model
|
from musetalk.utils.utils import load_all_model
|
||||||
from ttsreal import EdgeTTS,VoitsTTS,XTTS
|
from ttsreal import EdgeTTS,VoitsTTS,XTTS
|
||||||
|
@ -27,6 +28,102 @@ from museasr import MuseASR
|
||||||
import asyncio
|
import asyncio
|
||||||
from av import AudioFrame, VideoFrame
|
from av import AudioFrame, VideoFrame
|
||||||
|
|
||||||
|
from tqdm import tqdm
|
||||||
|
def read_imgs(img_list):
|
||||||
|
frames = []
|
||||||
|
print('reading images...')
|
||||||
|
for img_path in tqdm(img_list):
|
||||||
|
frame = cv2.imread(img_path)
|
||||||
|
frames.append(frame)
|
||||||
|
return frames
|
||||||
|
|
||||||
|
def __mirror_index(size, index):
|
||||||
|
#size = len(self.coord_list_cycle)
|
||||||
|
turn = index // size
|
||||||
|
res = index % size
|
||||||
|
if turn % 2 == 0:
|
||||||
|
return res
|
||||||
|
else:
|
||||||
|
return size - res - 1
|
||||||
|
|
||||||
|
def inference(render_event,batch_size,input_latent_list_cycle,audio_feat_queue,audio_out_queue,res_frame_queue,
|
||||||
|
vae, unet, pe,timesteps):
|
||||||
|
|
||||||
|
# _, vae, unet, pe = load_all_model()
|
||||||
|
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||||
|
# timesteps = torch.tensor([0], device=device)
|
||||||
|
# pe = pe.half()
|
||||||
|
# vae.vae = vae.vae.half()
|
||||||
|
# unet.model = unet.model.half()
|
||||||
|
|
||||||
|
#input_latent_list_cycle = torch.load(latents_out_path)
|
||||||
|
length = len(input_latent_list_cycle)
|
||||||
|
index = 0
|
||||||
|
count=0
|
||||||
|
counttime=0
|
||||||
|
print('start inference')
|
||||||
|
while True:
|
||||||
|
if render_event.is_set():
|
||||||
|
starttime=time.perf_counter()
|
||||||
|
try:
|
||||||
|
whisper_chunks = audio_feat_queue.get(block=True, timeout=1)
|
||||||
|
except queue.Empty:
|
||||||
|
continue
|
||||||
|
is_all_silence=True
|
||||||
|
audio_frames = []
|
||||||
|
for _ in range(batch_size*2):
|
||||||
|
frame,type = audio_out_queue.get()
|
||||||
|
audio_frames.append((frame,type))
|
||||||
|
if type==0:
|
||||||
|
is_all_silence=False
|
||||||
|
if is_all_silence:
|
||||||
|
for i in range(batch_size):
|
||||||
|
res_frame_queue.put((None,__mirror_index(length,index),audio_frames[i*2:i*2+2]))
|
||||||
|
index = index + 1
|
||||||
|
else:
|
||||||
|
# print('infer=======')
|
||||||
|
t=time.perf_counter()
|
||||||
|
whisper_batch = np.stack(whisper_chunks)
|
||||||
|
latent_batch = []
|
||||||
|
for i in range(batch_size):
|
||||||
|
idx = __mirror_index(length,index+i)
|
||||||
|
latent = input_latent_list_cycle[idx]
|
||||||
|
latent_batch.append(latent)
|
||||||
|
latent_batch = torch.cat(latent_batch, dim=0)
|
||||||
|
|
||||||
|
# for i, (whisper_batch,latent_batch) in enumerate(gen):
|
||||||
|
audio_feature_batch = torch.from_numpy(whisper_batch)
|
||||||
|
audio_feature_batch = audio_feature_batch.to(device=unet.device,
|
||||||
|
dtype=unet.model.dtype)
|
||||||
|
audio_feature_batch = pe(audio_feature_batch)
|
||||||
|
latent_batch = latent_batch.to(dtype=unet.model.dtype)
|
||||||
|
# print('prepare time:',time.perf_counter()-t)
|
||||||
|
# t=time.perf_counter()
|
||||||
|
|
||||||
|
pred_latents = unet.model(latent_batch,
|
||||||
|
timesteps,
|
||||||
|
encoder_hidden_states=audio_feature_batch).sample
|
||||||
|
# print('unet time:',time.perf_counter()-t)
|
||||||
|
# t=time.perf_counter()
|
||||||
|
recon = vae.decode_latents(pred_latents)
|
||||||
|
# print('vae time:',time.perf_counter()-t)
|
||||||
|
#print('diffusion len=',len(recon))
|
||||||
|
counttime += (time.perf_counter() - t)
|
||||||
|
count += batch_size
|
||||||
|
#_totalframe += 1
|
||||||
|
if count>=100:
|
||||||
|
print(f"------actual avg infer fps:{count/counttime:.4f}")
|
||||||
|
count=0
|
||||||
|
counttime=0
|
||||||
|
for i,res_frame in enumerate(recon):
|
||||||
|
#self.__pushmedia(res_frame,loop,audio_track,video_track)
|
||||||
|
res_frame_queue.put((res_frame,__mirror_index(length,index),audio_frames[i*2:i*2+2]))
|
||||||
|
index = index + 1
|
||||||
|
print('total batch time:',time.perf_counter()-starttime)
|
||||||
|
else:
|
||||||
|
time.sleep(1)
|
||||||
|
print('musereal inference processor stop')
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
class MuseReal:
|
class MuseReal:
|
||||||
def __init__(self, opt):
|
def __init__(self, opt):
|
||||||
|
@ -55,7 +152,7 @@ class MuseReal:
|
||||||
}
|
}
|
||||||
self.batch_size = opt.batch_size
|
self.batch_size = opt.batch_size
|
||||||
self.idx = 0
|
self.idx = 0
|
||||||
self.res_frame_queue = Queue()
|
self.res_frame_queue = mp.Queue(self.batch_size*2)
|
||||||
self.__loadmodels()
|
self.__loadmodels()
|
||||||
self.__loadavatar()
|
self.__loadavatar()
|
||||||
|
|
||||||
|
@ -68,6 +165,11 @@ class MuseReal:
|
||||||
self.tts = XTTS(opt,self)
|
self.tts = XTTS(opt,self)
|
||||||
#self.__warm_up()
|
#self.__warm_up()
|
||||||
|
|
||||||
|
self.render_event = mp.Event()
|
||||||
|
mp.Process(target=inference, args=(self.render_event,self.batch_size,self.input_latent_list_cycle,
|
||||||
|
self.asr.feat_queue,self.asr.output_queue,self.res_frame_queue,
|
||||||
|
self.vae, self.unet, self.pe,self.timesteps)).start()
|
||||||
|
|
||||||
def __loadmodels(self):
|
def __loadmodels(self):
|
||||||
# load model weights
|
# load model weights
|
||||||
self.audio_processor, self.vae, self.unet, self.pe = load_all_model()
|
self.audio_processor, self.vae, self.unet, self.pe = load_all_model()
|
||||||
|
@ -129,59 +231,6 @@ class MuseReal:
|
||||||
encoder_hidden_states=audio_feature_batch).sample
|
encoder_hidden_states=audio_feature_batch).sample
|
||||||
recon = self.vae.decode_latents(pred_latents)
|
recon = self.vae.decode_latents(pred_latents)
|
||||||
|
|
||||||
def test_step(self,loop=None,audio_track=None,video_track=None):
|
|
||||||
|
|
||||||
# gen = datagen(whisper_chunks,
|
|
||||||
# self.input_latent_list_cycle,
|
|
||||||
# self.batch_size)
|
|
||||||
starttime=time.perf_counter()
|
|
||||||
self.asr.run_step()
|
|
||||||
whisper_chunks = self.asr.get_next_feat()
|
|
||||||
is_all_silence=True
|
|
||||||
audio_frames = []
|
|
||||||
for _ in range(self.batch_size*2):
|
|
||||||
frame,type = self.asr.get_audio_out()
|
|
||||||
audio_frames.append((frame,type))
|
|
||||||
if type==0:
|
|
||||||
is_all_silence=False
|
|
||||||
if is_all_silence:
|
|
||||||
for i in range(self.batch_size):
|
|
||||||
self.res_frame_queue.put((None,self.__mirror_index(self.idx),audio_frames[i*2:i*2+2]))
|
|
||||||
self.idx = self.idx + 1
|
|
||||||
else:
|
|
||||||
# print('infer=======')
|
|
||||||
t=time.perf_counter()
|
|
||||||
whisper_batch = np.stack(whisper_chunks)
|
|
||||||
latent_batch = []
|
|
||||||
for i in range(self.batch_size):
|
|
||||||
idx = self.__mirror_index(self.idx+i)
|
|
||||||
latent = self.input_latent_list_cycle[idx]
|
|
||||||
latent_batch.append(latent)
|
|
||||||
latent_batch = torch.cat(latent_batch, dim=0)
|
|
||||||
|
|
||||||
# for i, (whisper_batch,latent_batch) in enumerate(gen):
|
|
||||||
audio_feature_batch = torch.from_numpy(whisper_batch)
|
|
||||||
audio_feature_batch = audio_feature_batch.to(device=self.unet.device,
|
|
||||||
dtype=self.unet.model.dtype)
|
|
||||||
audio_feature_batch = self.pe(audio_feature_batch)
|
|
||||||
latent_batch = latent_batch.to(dtype=self.unet.model.dtype)
|
|
||||||
# print('prepare time:',time.perf_counter()-t)
|
|
||||||
# t=time.perf_counter()
|
|
||||||
|
|
||||||
pred_latents = self.unet.model(latent_batch,
|
|
||||||
self.timesteps,
|
|
||||||
encoder_hidden_states=audio_feature_batch).sample
|
|
||||||
# print('unet time:',time.perf_counter()-t)
|
|
||||||
# t=time.perf_counter()
|
|
||||||
recon = self.vae.decode_latents(pred_latents)
|
|
||||||
# print('vae time:',time.perf_counter()-t)
|
|
||||||
#print('diffusion len=',len(recon))
|
|
||||||
for i,res_frame in enumerate(recon):
|
|
||||||
#self.__pushmedia(res_frame,loop,audio_track,video_track)
|
|
||||||
self.res_frame_queue.put((res_frame,self.__mirror_index(self.idx),audio_frames[i*2:i*2+2]))
|
|
||||||
self.idx = self.idx + 1
|
|
||||||
print('total batch time:',time.perf_counter()-starttime)
|
|
||||||
|
|
||||||
|
|
||||||
def process_frames(self,quit_event,loop=None,audio_track=None,video_track=None):
|
def process_frames(self,quit_event,loop=None,audio_track=None,video_track=None):
|
||||||
|
|
||||||
|
@ -203,7 +252,9 @@ class MuseReal:
|
||||||
mask = self.mask_list_cycle[idx]
|
mask = self.mask_list_cycle[idx]
|
||||||
mask_crop_box = self.mask_coords_list_cycle[idx]
|
mask_crop_box = self.mask_coords_list_cycle[idx]
|
||||||
#combine_frame = get_image(ori_frame,res_frame,bbox)
|
#combine_frame = get_image(ori_frame,res_frame,bbox)
|
||||||
|
#t=time.perf_counter()
|
||||||
combine_frame = get_image_blending(ori_frame,res_frame,bbox,mask,mask_crop_box)
|
combine_frame = get_image_blending(ori_frame,res_frame,bbox,mask,mask_crop_box)
|
||||||
|
#print('blending time:',time.perf_counter()-t)
|
||||||
|
|
||||||
image = combine_frame #(outputs['image'] * 255).astype(np.uint8)
|
image = combine_frame #(outputs['image'] * 255).astype(np.uint8)
|
||||||
new_frame = VideoFrame.from_ndarray(image, format="bgr24")
|
new_frame = VideoFrame.from_ndarray(image, format="bgr24")
|
||||||
|
@ -228,6 +279,7 @@ class MuseReal:
|
||||||
process_thread = Thread(target=self.process_frames, args=(quit_event,loop,audio_track,video_track))
|
process_thread = Thread(target=self.process_frames, args=(quit_event,loop,audio_track,video_track))
|
||||||
process_thread.start()
|
process_thread.start()
|
||||||
|
|
||||||
|
self.render_event.set() #start infer process render
|
||||||
count=0
|
count=0
|
||||||
totaltime=0
|
totaltime=0
|
||||||
_starttime=time.perf_counter()
|
_starttime=time.perf_counter()
|
||||||
|
@ -236,20 +288,21 @@ class MuseReal:
|
||||||
# update texture every frame
|
# update texture every frame
|
||||||
# audio stream thread...
|
# audio stream thread...
|
||||||
t = time.perf_counter()
|
t = time.perf_counter()
|
||||||
self.test_step(loop,audio_track,video_track)
|
self.asr.run_step()
|
||||||
totaltime += (time.perf_counter() - t)
|
#self.test_step(loop,audio_track,video_track)
|
||||||
count += self.opt.batch_size
|
# totaltime += (time.perf_counter() - t)
|
||||||
#_totalframe += 1
|
# count += self.opt.batch_size
|
||||||
if count>=100:
|
# if count>=100:
|
||||||
print(f"------actual avg infer fps:{count/totaltime:.4f}")
|
# print(f"------actual avg infer fps:{count/totaltime:.4f}")
|
||||||
count=0
|
# count=0
|
||||||
totaltime=0
|
# totaltime=0
|
||||||
if video_track._queue.qsize()>=2*self.opt.batch_size:
|
if video_track._queue.qsize()>=2*self.opt.batch_size:
|
||||||
#print('sleep qsize=',video_track._queue.qsize())
|
print('sleep qsize=',video_track._queue.qsize())
|
||||||
time.sleep(0.04*self.opt.batch_size*1.5)
|
time.sleep(0.04*self.opt.batch_size*1.5)
|
||||||
|
|
||||||
# delay = _starttime+_totalframe*0.04-time.perf_counter() #40ms
|
# delay = _starttime+_totalframe*0.04-time.perf_counter() #40ms
|
||||||
# if delay > 0:
|
# if delay > 0:
|
||||||
# time.sleep(delay)
|
# time.sleep(delay)
|
||||||
|
self.render_event.clear() #end infer process render
|
||||||
print('musereal thread stop')
|
print('musereal thread stop')
|
||||||
|
|
Loading…
Reference in New Issue