improve musetalk infer speed
This commit is contained in:
parent
016442272e
commit
d01860176e
15
README.md
15
README.md
|
@ -177,12 +177,12 @@ docker run --gpus all -it --network=host --rm registry.cn-hangzhou.aliyuncs.com
|
|||
```
|
||||
docker版本已经不是最新代码,可以作为一个空环境,把最新代码拷进去运行。
|
||||
|
||||
另外提供autodl教程:
|
||||
另外提供autodl镜像:
|
||||
https://www.codewithgpu.com/i/lipku/metahuman-stream/base
|
||||
[autodl教程](autodl/README.md)
|
||||
## 5. Data flow
|
||||

|
||||
|
||||
## 6. 数字人模型文件
|
||||
|
||||
## 5. 数字人模型文件
|
||||
可以替换成自己训练的模型(https://github.com/Fictionarry/ER-NeRF)
|
||||
```python
|
||||
.
|
||||
|
@ -194,7 +194,7 @@ docker版本已经不是最新代码,可以作为一个空环境,把最新
|
|||
|
||||
```
|
||||
|
||||
## 7. 性能分析
|
||||
## 6. 性能分析
|
||||
1. 帧率
|
||||
在Tesla T4显卡上测试整体fps为18左右,如果去掉音视频编码推流,帧率在20左右。用4090显卡可以达到40多帧/秒。
|
||||
优化:新开一个线程运行音视频编码推流
|
||||
|
@ -204,7 +204,7 @@ docker版本已经不是最新代码,可以作为一个空环境,把最新
|
|||
(2)wav2vec延时0.4s,需要缓存18帧音频做计算
|
||||
(3)srs转发延时,设置srs服务器减少缓冲延时。具体配置可看 https://ossrs.net/lts/zh-cn/docs/v5/doc/low-latency
|
||||
|
||||
## 8. TODO
|
||||
## 7. TODO
|
||||
- [x] 添加chatgpt实现数字人对话
|
||||
- [x] 声音克隆
|
||||
- [x] 数字人静音时用一段视频代替
|
||||
|
@ -215,5 +215,4 @@ docker版本已经不是最新代码,可以作为一个空环境,把最新
|
|||
知识星球: https://t.zsxq.com/7NMyO
|
||||
微信公众号:数字人技术
|
||||

|
||||
Buy me a coffee
|
||||

|
||||
|
||||
|
|
7
app.py
7
app.py
|
@ -163,10 +163,11 @@ async def run(push_url):
|
|||
await pc.setLocalDescription(await pc.createOffer())
|
||||
answer = await post(push_url,pc.localDescription.sdp)
|
||||
await pc.setRemoteDescription(RTCSessionDescription(sdp=answer,type='answer'))
|
||||
##########################################
|
||||
|
||||
##########################################
|
||||
# os.environ['MKL_SERVICE_FORCE_INTEL'] = '1'
|
||||
# os.environ['MULTIPROCESSING_METHOD'] = 'forkserver'
|
||||
if __name__ == '__main__':
|
||||
|
||||
multiprocessing.set_start_method('spawn')
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--pose', type=str, default="data/data_kf.json", help="transforms.json, pose source")
|
||||
parser.add_argument('--au', type=str, default="data/au.csv", help="eye blink area")
|
||||
|
|
|
@ -30,8 +30,8 @@ python app.py --listenport 6006 --transport rtcpush --push_url 'http://<阿里
|
|||
```
|
||||
|
||||
### 访问
|
||||
访问的是静态的rtcpushapi.html
|
||||
http://<autodl外网地址>/rtcpushapi.html
|
||||
访问的是静态的rtcpushapi.html
|
||||
http://<autodl外网地址>/rtcpushapi.html
|
||||
你需要修改 项目目录中的 web/rtcpushapi.html
|
||||
|
||||
将
|
||||
|
@ -51,8 +51,7 @@ var url = "http://公网ip:1985/rtc/v1/whep/?app=live&stream=livestream"
|
|||

|
||||
|
||||
## 注意事项
|
||||
1.autodl 如果是个人用户需要使用官方的ssh代理工具进行端口代理,才可以访问6006
|
||||
2.基础环境镜像中如果想使用musetalk环境,还需要自己操作
|
||||
3.声音延迟需要后台优化srs的功能
|
||||
4.musetalk 暂不支持rtmp推流 但是支持rtcpush
|
||||
5.musetalk 教程即将更新
|
||||
1. autodl 如果是个人用户需要使用官方的ssh代理工具进行端口代理,才可以访问6006
|
||||
2. 声音延迟需要后台优化srs的功能
|
||||
3. musetalk 暂不支持rtmp推流 但是支持rtcpush
|
||||
4. musetalk 教程即将更新
|
16
museasr.py
16
museasr.py
|
@ -7,6 +7,7 @@ import resampy
|
|||
import queue
|
||||
from queue import Queue
|
||||
from io import BytesIO
|
||||
import multiprocessing as mp
|
||||
|
||||
from musetalk.whisper.audio2feature import Audio2Feature
|
||||
|
||||
|
@ -19,13 +20,14 @@ class MuseASR:
|
|||
self.chunk = self.sample_rate // self.fps # 320 samples per chunk (20ms * 16000 / 1000)
|
||||
self.queue = Queue()
|
||||
# self.input_stream = BytesIO()
|
||||
self.output_queue = Queue()
|
||||
self.output_queue = mp.Queue()
|
||||
|
||||
self.audio_processor = audio_processor
|
||||
self.batch_size = opt.batch_size
|
||||
|
||||
self.stride_left_size = self.stride_right_size = 6
|
||||
self.audio_feats = []
|
||||
self.feat_queue = mp.Queue(5)
|
||||
|
||||
self.warm_up()
|
||||
|
||||
|
@ -34,7 +36,7 @@ class MuseASR:
|
|||
|
||||
def __get_audio_frame(self):
|
||||
try:
|
||||
frame = self.queue.get(block=True,timeout=0.02)
|
||||
frame = self.queue.get(block=True,timeout=0.018)
|
||||
type = 0
|
||||
#print(f'[INFO] get frame {frame.shape}')
|
||||
except queue.Empty:
|
||||
|
@ -71,12 +73,12 @@ class MuseASR:
|
|||
inputs = np.concatenate(frames) # [N * chunk]
|
||||
whisper_feature = self.audio_processor.audio2feat(inputs)
|
||||
for feature in whisper_feature:
|
||||
self.audio_feats.append(feature)
|
||||
|
||||
self.audio_feats.append(feature)
|
||||
#print(f"processing audio costs {(time.time() - start_time) * 1000}ms, inputs shape:{inputs.shape} whisper_feature len:{len(whisper_feature)}")
|
||||
|
||||
def get_next_feat(self):
|
||||
whisper_chunks = self.audio_processor.feature2chunks(feature_array=self.audio_feats,fps=self.fps/2,batch_size=self.batch_size,start=self.stride_left_size/2 )
|
||||
#print(f"whisper_chunks len:{len(whisper_chunks)},self.audio_feats len:{len(self.audio_feats)},self.output_queue len:{self.output_queue.qsize()}")
|
||||
self.audio_feats = self.audio_feats[-(self.stride_left_size + self.stride_right_size):]
|
||||
return whisper_chunks
|
||||
self.feat_queue.put(whisper_chunks)
|
||||
|
||||
def get_next_feat(self,block,timeout):
|
||||
return self.feat_queue.get(block,timeout)
|
181
musereal.py
181
musereal.py
|
@ -16,9 +16,10 @@ import queue
|
|||
from queue import Queue
|
||||
from threading import Thread, Event
|
||||
from io import BytesIO
|
||||
import multiprocessing as mp
|
||||
|
||||
from musetalk.utils.utils import get_file_type,get_video_fps,datagen
|
||||
from musetalk.utils.preprocessing import get_landmark_and_bbox,read_imgs,coord_placeholder
|
||||
#from musetalk.utils.preprocessing import get_landmark_and_bbox,read_imgs,coord_placeholder
|
||||
from musetalk.utils.blending import get_image,get_image_prepare_material,get_image_blending
|
||||
from musetalk.utils.utils import load_all_model
|
||||
from ttsreal import EdgeTTS,VoitsTTS,XTTS
|
||||
|
@ -27,6 +28,102 @@ from museasr import MuseASR
|
|||
import asyncio
|
||||
from av import AudioFrame, VideoFrame
|
||||
|
||||
from tqdm import tqdm
|
||||
def read_imgs(img_list):
|
||||
frames = []
|
||||
print('reading images...')
|
||||
for img_path in tqdm(img_list):
|
||||
frame = cv2.imread(img_path)
|
||||
frames.append(frame)
|
||||
return frames
|
||||
|
||||
def __mirror_index(size, index):
|
||||
#size = len(self.coord_list_cycle)
|
||||
turn = index // size
|
||||
res = index % size
|
||||
if turn % 2 == 0:
|
||||
return res
|
||||
else:
|
||||
return size - res - 1
|
||||
|
||||
def inference(render_event,batch_size,input_latent_list_cycle,audio_feat_queue,audio_out_queue,res_frame_queue,
|
||||
vae, unet, pe,timesteps):
|
||||
|
||||
# _, vae, unet, pe = load_all_model()
|
||||
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
# timesteps = torch.tensor([0], device=device)
|
||||
# pe = pe.half()
|
||||
# vae.vae = vae.vae.half()
|
||||
# unet.model = unet.model.half()
|
||||
|
||||
#input_latent_list_cycle = torch.load(latents_out_path)
|
||||
length = len(input_latent_list_cycle)
|
||||
index = 0
|
||||
count=0
|
||||
counttime=0
|
||||
print('start inference')
|
||||
while True:
|
||||
if render_event.is_set():
|
||||
starttime=time.perf_counter()
|
||||
try:
|
||||
whisper_chunks = audio_feat_queue.get(block=True, timeout=1)
|
||||
except queue.Empty:
|
||||
continue
|
||||
is_all_silence=True
|
||||
audio_frames = []
|
||||
for _ in range(batch_size*2):
|
||||
frame,type = audio_out_queue.get()
|
||||
audio_frames.append((frame,type))
|
||||
if type==0:
|
||||
is_all_silence=False
|
||||
if is_all_silence:
|
||||
for i in range(batch_size):
|
||||
res_frame_queue.put((None,__mirror_index(length,index),audio_frames[i*2:i*2+2]))
|
||||
index = index + 1
|
||||
else:
|
||||
# print('infer=======')
|
||||
t=time.perf_counter()
|
||||
whisper_batch = np.stack(whisper_chunks)
|
||||
latent_batch = []
|
||||
for i in range(batch_size):
|
||||
idx = __mirror_index(length,index+i)
|
||||
latent = input_latent_list_cycle[idx]
|
||||
latent_batch.append(latent)
|
||||
latent_batch = torch.cat(latent_batch, dim=0)
|
||||
|
||||
# for i, (whisper_batch,latent_batch) in enumerate(gen):
|
||||
audio_feature_batch = torch.from_numpy(whisper_batch)
|
||||
audio_feature_batch = audio_feature_batch.to(device=unet.device,
|
||||
dtype=unet.model.dtype)
|
||||
audio_feature_batch = pe(audio_feature_batch)
|
||||
latent_batch = latent_batch.to(dtype=unet.model.dtype)
|
||||
# print('prepare time:',time.perf_counter()-t)
|
||||
# t=time.perf_counter()
|
||||
|
||||
pred_latents = unet.model(latent_batch,
|
||||
timesteps,
|
||||
encoder_hidden_states=audio_feature_batch).sample
|
||||
# print('unet time:',time.perf_counter()-t)
|
||||
# t=time.perf_counter()
|
||||
recon = vae.decode_latents(pred_latents)
|
||||
# print('vae time:',time.perf_counter()-t)
|
||||
#print('diffusion len=',len(recon))
|
||||
counttime += (time.perf_counter() - t)
|
||||
count += batch_size
|
||||
#_totalframe += 1
|
||||
if count>=100:
|
||||
print(f"------actual avg infer fps:{count/counttime:.4f}")
|
||||
count=0
|
||||
counttime=0
|
||||
for i,res_frame in enumerate(recon):
|
||||
#self.__pushmedia(res_frame,loop,audio_track,video_track)
|
||||
res_frame_queue.put((res_frame,__mirror_index(length,index),audio_frames[i*2:i*2+2]))
|
||||
index = index + 1
|
||||
print('total batch time:',time.perf_counter()-starttime)
|
||||
else:
|
||||
time.sleep(1)
|
||||
print('musereal inference processor stop')
|
||||
|
||||
@torch.no_grad()
|
||||
class MuseReal:
|
||||
def __init__(self, opt):
|
||||
|
@ -55,7 +152,7 @@ class MuseReal:
|
|||
}
|
||||
self.batch_size = opt.batch_size
|
||||
self.idx = 0
|
||||
self.res_frame_queue = Queue()
|
||||
self.res_frame_queue = mp.Queue(self.batch_size*2)
|
||||
self.__loadmodels()
|
||||
self.__loadavatar()
|
||||
|
||||
|
@ -67,6 +164,11 @@ class MuseReal:
|
|||
elif opt.tts == "xtts":
|
||||
self.tts = XTTS(opt,self)
|
||||
#self.__warm_up()
|
||||
|
||||
self.render_event = mp.Event()
|
||||
mp.Process(target=inference, args=(self.render_event,self.batch_size,self.input_latent_list_cycle,
|
||||
self.asr.feat_queue,self.asr.output_queue,self.res_frame_queue,
|
||||
self.vae, self.unet, self.pe,self.timesteps)).start()
|
||||
|
||||
def __loadmodels(self):
|
||||
# load model weights
|
||||
|
@ -128,59 +230,6 @@ class MuseReal:
|
|||
self.timesteps,
|
||||
encoder_hidden_states=audio_feature_batch).sample
|
||||
recon = self.vae.decode_latents(pred_latents)
|
||||
|
||||
def test_step(self,loop=None,audio_track=None,video_track=None):
|
||||
|
||||
# gen = datagen(whisper_chunks,
|
||||
# self.input_latent_list_cycle,
|
||||
# self.batch_size)
|
||||
starttime=time.perf_counter()
|
||||
self.asr.run_step()
|
||||
whisper_chunks = self.asr.get_next_feat()
|
||||
is_all_silence=True
|
||||
audio_frames = []
|
||||
for _ in range(self.batch_size*2):
|
||||
frame,type = self.asr.get_audio_out()
|
||||
audio_frames.append((frame,type))
|
||||
if type==0:
|
||||
is_all_silence=False
|
||||
if is_all_silence:
|
||||
for i in range(self.batch_size):
|
||||
self.res_frame_queue.put((None,self.__mirror_index(self.idx),audio_frames[i*2:i*2+2]))
|
||||
self.idx = self.idx + 1
|
||||
else:
|
||||
# print('infer=======')
|
||||
t=time.perf_counter()
|
||||
whisper_batch = np.stack(whisper_chunks)
|
||||
latent_batch = []
|
||||
for i in range(self.batch_size):
|
||||
idx = self.__mirror_index(self.idx+i)
|
||||
latent = self.input_latent_list_cycle[idx]
|
||||
latent_batch.append(latent)
|
||||
latent_batch = torch.cat(latent_batch, dim=0)
|
||||
|
||||
# for i, (whisper_batch,latent_batch) in enumerate(gen):
|
||||
audio_feature_batch = torch.from_numpy(whisper_batch)
|
||||
audio_feature_batch = audio_feature_batch.to(device=self.unet.device,
|
||||
dtype=self.unet.model.dtype)
|
||||
audio_feature_batch = self.pe(audio_feature_batch)
|
||||
latent_batch = latent_batch.to(dtype=self.unet.model.dtype)
|
||||
# print('prepare time:',time.perf_counter()-t)
|
||||
# t=time.perf_counter()
|
||||
|
||||
pred_latents = self.unet.model(latent_batch,
|
||||
self.timesteps,
|
||||
encoder_hidden_states=audio_feature_batch).sample
|
||||
# print('unet time:',time.perf_counter()-t)
|
||||
# t=time.perf_counter()
|
||||
recon = self.vae.decode_latents(pred_latents)
|
||||
# print('vae time:',time.perf_counter()-t)
|
||||
#print('diffusion len=',len(recon))
|
||||
for i,res_frame in enumerate(recon):
|
||||
#self.__pushmedia(res_frame,loop,audio_track,video_track)
|
||||
self.res_frame_queue.put((res_frame,self.__mirror_index(self.idx),audio_frames[i*2:i*2+2]))
|
||||
self.idx = self.idx + 1
|
||||
print('total batch time:',time.perf_counter()-starttime)
|
||||
|
||||
|
||||
def process_frames(self,quit_event,loop=None,audio_track=None,video_track=None):
|
||||
|
@ -203,7 +252,9 @@ class MuseReal:
|
|||
mask = self.mask_list_cycle[idx]
|
||||
mask_crop_box = self.mask_coords_list_cycle[idx]
|
||||
#combine_frame = get_image(ori_frame,res_frame,bbox)
|
||||
#t=time.perf_counter()
|
||||
combine_frame = get_image_blending(ori_frame,res_frame,bbox,mask,mask_crop_box)
|
||||
#print('blending time:',time.perf_counter()-t)
|
||||
|
||||
image = combine_frame #(outputs['image'] * 255).astype(np.uint8)
|
||||
new_frame = VideoFrame.from_ndarray(image, format="bgr24")
|
||||
|
@ -228,6 +279,7 @@ class MuseReal:
|
|||
process_thread = Thread(target=self.process_frames, args=(quit_event,loop,audio_track,video_track))
|
||||
process_thread.start()
|
||||
|
||||
self.render_event.set() #start infer process render
|
||||
count=0
|
||||
totaltime=0
|
||||
_starttime=time.perf_counter()
|
||||
|
@ -236,20 +288,21 @@ class MuseReal:
|
|||
# update texture every frame
|
||||
# audio stream thread...
|
||||
t = time.perf_counter()
|
||||
self.test_step(loop,audio_track,video_track)
|
||||
totaltime += (time.perf_counter() - t)
|
||||
count += self.opt.batch_size
|
||||
#_totalframe += 1
|
||||
if count>=100:
|
||||
print(f"------actual avg infer fps:{count/totaltime:.4f}")
|
||||
count=0
|
||||
totaltime=0
|
||||
self.asr.run_step()
|
||||
#self.test_step(loop,audio_track,video_track)
|
||||
# totaltime += (time.perf_counter() - t)
|
||||
# count += self.opt.batch_size
|
||||
# if count>=100:
|
||||
# print(f"------actual avg infer fps:{count/totaltime:.4f}")
|
||||
# count=0
|
||||
# totaltime=0
|
||||
if video_track._queue.qsize()>=2*self.opt.batch_size:
|
||||
#print('sleep qsize=',video_track._queue.qsize())
|
||||
print('sleep qsize=',video_track._queue.qsize())
|
||||
time.sleep(0.04*self.opt.batch_size*1.5)
|
||||
|
||||
# delay = _starttime+_totalframe*0.04-time.perf_counter() #40ms
|
||||
# if delay > 0:
|
||||
# time.sleep(delay)
|
||||
self.render_event.clear() #end infer process render
|
||||
print('musereal thread stop')
|
||||
|
Loading…
Reference in New Issue