docker启动项目环境搭建
This commit is contained in:
parent
f83d29620b
commit
fa08d4f670
2
app.py
2
app.py
|
@ -95,7 +95,7 @@ def txt_to_audio(text_):
|
|||
text_,
|
||||
gspeaker,
|
||||
"zh-cn", #en args.language,
|
||||
"http://localhost:9000", #args.server_url,
|
||||
"http://192.168.1.3:9000", #args.server_url,
|
||||
"20" #args.stream_chunk_size
|
||||
),
|
||||
nerfreal
|
||||
|
|
|
@ -0,0 +1,56 @@
|
|||
# 使用NVIDIA的CUDA基础镜像
|
||||
#FROM nvidia/cuda:11.3.0-cudnn8-runtime-ubuntu18.04
|
||||
#FROM m11007322/cuda11.3.0-cudnn8-devel-ubuntu20.04-jupyterlab
|
||||
FROM nvidia/cuda:11.3.1-cudnn8-devel-ubuntu20.04
|
||||
# 安装Python和pip
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends \
|
||||
python3 \
|
||||
python3-pip \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# 安装Jupyter
|
||||
RUN pip3 install --no-cache-dir jupyter
|
||||
|
||||
# 安装基础工具
|
||||
RUN apt-get update -yq --fix-missing \
|
||||
&& DEBIAN_FRONTEND=noninteractive apt-get install -yq --no-install-recommends \
|
||||
pkg-config \
|
||||
wget \
|
||||
cmake \
|
||||
curl \
|
||||
git \
|
||||
vim
|
||||
|
||||
# 创建一个新的Conda环境
|
||||
RUN apt-get update && apt-get install -y wget \
|
||||
&& wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh \
|
||||
&& /bin/bash Miniconda3-latest-Linux-x86_64.sh -b -p /opt/conda \
|
||||
&& rm Miniconda3-latest-Linux-x86_64.sh \
|
||||
&& apt-get remove --purge --auto-remove -y wget \
|
||||
&& apt-get clean \
|
||||
&& ln -s /opt/conda/bin/conda /usr/bin/conda \
|
||||
&& conda update -n base -c defaults conda
|
||||
|
||||
SHELL ["/bin/bash","-ic"]
|
||||
# 增加cuda全局变量
|
||||
RUN echo "export CUDA_HOME=/usr/local/cuda" >> ~/.bashrc \
|
||||
&& echo "export PATH=${CUDA_HOME}/bin:$PATH" >> ~/.bashrc \
|
||||
&& echo "export LD_LIBRARY_PATH=${CUDA_HOME}/lib64:$LD_LIBRARY_PATH" >> ~/.bashrc \
|
||||
&& source ~/.bashrc
|
||||
|
||||
#&& echo "nameserver 8.8.8.8" >> /etc/resolv.conf
|
||||
|
||||
# 安装cv2依赖,修复libGL.so.1错误
|
||||
RUN apt-get update
|
||||
RUN apt-get install ffmpeg libsm6 libxext6 -y
|
||||
|
||||
# 配置Jupyter
|
||||
ENV JUPYTER_ENABLE_LAB=yes
|
||||
ENV USER=root
|
||||
ENV HOME=/home/$USER
|
||||
|
||||
# 设置工作目录
|
||||
WORKDIR /root
|
||||
|
||||
# 设置启动命令
|
||||
CMD ["jupyter", "lab", "--ip='*'", "--port=8888", "--no-browser", "--allow-root"]
|
|
@ -0,0 +1,74 @@
|
|||
一、cuda11.3容器启动过程
|
||||
1、拷贝Dockerfile文件到任意磁盘目录,然后执行下面的命令
|
||||
docker build -t nvidia/cuda:11.3.1-cudnn8-devel-ubuntu20.04-jupyter-conda .
|
||||
|
||||
docker images
|
||||
|
||||
2、启动容器
|
||||
打开镜像(常规模式--支持使用GPU)
|
||||
docker run -i -t --gpus all nvidia/cuda:11.3.1-cudnn8-devel-ubuntu20.04-jupyter-conda /bin/bash
|
||||
|
||||
|
||||
打开镜像(增强模式--支持使用GPU、映射目录、设置内存)
|
||||
docker run -i -t -v /home/liguopu/:/guopu:rw --gpus all --shm-size 16G nvidia/cuda:11.3.1-cudnn8-devel-ubuntu20.04 /bin/bash
|
||||
|
||||
测试环境(使用端口映射,把服务映射出去)
|
||||
docker run -i -td --name metehuman --gpus -p 8000:8000 all nvidia/cuda:11.3.1-cudnn8-devel-ubuntu20.04-jupyter-conda /bin/bash
|
||||
|
||||
正式使用(8000端口为业务对外的服务端口,根据情况可以自行增加)
|
||||
docker run -it --rm -p 8886:8888 -p 8000:8000 --gpus all nvidia/cuda:11.3.1-cudnn8-devel-ubuntu20.04-jupyter-conda
|
||||
docker run -itd -p 8886:8888 -p 8000:8000 --gpus all nvidia/cuda:11.3.1-cudnn8-devel-ubuntu20.04-jupyter-conda
|
||||
docker run -itd --name metehuman -p 8886:8888 -p 8000:8000 --gpus all nvidia/cuda:11.3.1-cudnn8-devel-ubuntu20.04-jupyter-conda
|
||||
|
||||
docker run --gpus '"device=vgpu,id=0"' -it --rm nvidia/cuda:11.0-base nvidia-smi
|
||||
|
||||
docker run -itd --name metehuman \
|
||||
-p 8885:8888 -p 8001:8000 \
|
||||
-e GRANT_SUDO=yes \
|
||||
-e JUPYTER_ENABLE_LAB=yes \
|
||||
--user root \
|
||||
--gpus all \
|
||||
nvidia/cuda:11.3.1-cudnn8-devel-ubuntu20.04-jupyter-conda
|
||||
|
||||
3、查看token
|
||||
token=$(docker exec -it metehuman jupyter server list | grep -oP '(?<=token=)[a-zA-Z0-9]+')
|
||||
echo $token
|
||||
|
||||
二、启动默认测试镜像
|
||||
docker pull m11007322/cuda11.3.0-cudnn8-devel-ubuntu20.04-jupyterlab
|
||||
docker run -it \
|
||||
-d \
|
||||
--gpus all \
|
||||
-p 8887:8888 \
|
||||
-p 8001:8000 \
|
||||
--name metehuman2 \
|
||||
--user root \
|
||||
-e NB_USER="ubuntu" \
|
||||
-e CHOWN_HOME=yes \
|
||||
-e GRANT_SUDO=yes \
|
||||
-w "/home/${NB_USER}" \
|
||||
-v "$PWD":"/home/$USER/work" \
|
||||
m11007322/cuda11.3.0-cudnn8-devel-ubuntu20.04-jupyterlab
|
||||
|
||||
三、启动jupter镜像测试
|
||||
docker run -itd --name test \
|
||||
-p 8886:8888 -p 8000:8000 \
|
||||
-e GRANT_SUDO=yes \
|
||||
-e JUPYTER_ENABLE_LAB=yes \
|
||||
--user root \
|
||||
--gpus '"device=vgpu,id=0"' \
|
||||
nvidia/cuda:11.3.1-cudnn8-devel-ubuntu20.04-jupyter-conda
|
||||
|
||||
docker run -it --name test --network=host --dns 8.8.8.8 --dns 8.8.4.4 --rm ubuntu
|
||||
docker run -it --gpus all --network=host --rm registry.cn-hangzhou.aliyuncs.com/lipku/nerfstream:v1.3
|
||||
|
||||
四、查看容器IP
|
||||
docker inspect bceda087524e | grep IPAddress
|
||||
|
||||
curl https://openai.api2d.net/v1/chat/completions \
|
||||
-H 'Content-Type: application/json' \
|
||||
-H 'Authorization: Bearer fk193752-RlcPi2mBQqPOU5u1F8SFkG2z0gtxD0HS' \
|
||||
-d '{
|
||||
"model": "gpt-3.5-turbo",
|
||||
"messages": [{"role": "user", "content": "你好!给我讲个笑话。"}]
|
||||
}'
|
Loading…
Reference in New Issue