import os import glob import tqdm import json import argparse import cv2 import numpy as np def extract_audio(path, out_path, sample_rate=16000): print(f'[INFO] ===== extract audio from {path} to {out_path} =====') cmd = f'ffmpeg -i {path} -f wav -ar {sample_rate} {out_path}' os.system(cmd) print(f'[INFO] ===== extracted audio =====') def extract_audio_features(path, mode='wav2vec'): print(f'[INFO] ===== extract audio labels for {path} =====') if mode == 'wav2vec': cmd = f'python nerf/asr.py --wav {path} --save_feats' else: # deepspeech cmd = f'python data_utils/deepspeech_features/extract_ds_features.py --input {path}' os.system(cmd) print(f'[INFO] ===== extracted audio labels =====') def extract_images(path, out_path, fps=25): print(f'[INFO] ===== extract images from {path} to {out_path} =====') cmd = f'ffmpeg -i {path} -vf fps={fps} -qmin 1 -q:v 1 -start_number 0 {os.path.join(out_path, "%d.jpg")}' os.system(cmd) print(f'[INFO] ===== extracted images =====') def extract_semantics(ori_imgs_dir, parsing_dir): print(f'[INFO] ===== extract semantics from {ori_imgs_dir} to {parsing_dir} =====') cmd = f'python data_utils/face_parsing/test.py --respath={parsing_dir} --imgpath={ori_imgs_dir}' os.system(cmd) print(f'[INFO] ===== extracted semantics =====') def extract_landmarks(ori_imgs_dir): print(f'[INFO] ===== extract face landmarks from {ori_imgs_dir} =====') import face_alignment fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, flip_input=False) image_paths = glob.glob(os.path.join(ori_imgs_dir, '*.jpg')) for image_path in tqdm.tqdm(image_paths): input = cv2.imread(image_path, cv2.IMREAD_UNCHANGED) # [H, W, 3] input = cv2.cvtColor(input, cv2.COLOR_BGR2RGB) preds = fa.get_landmarks(input) if len(preds) > 0: lands = preds[0].reshape(-1, 2)[:,:2] np.savetxt(image_path.replace('jpg', 'lms'), lands, '%f') del fa print(f'[INFO] ===== extracted face landmarks =====') def extract_background(base_dir, ori_imgs_dir): print(f'[INFO] ===== extract background image from {ori_imgs_dir} =====') from sklearn.neighbors import NearestNeighbors image_paths = glob.glob(os.path.join(ori_imgs_dir, '*.jpg')) # only use 1/20 image_paths image_paths = image_paths[::20] # read one image to get H/W tmp_image = cv2.imread(image_paths[0], cv2.IMREAD_UNCHANGED) # [H, W, 3] h, w = tmp_image.shape[:2] # nearest neighbors all_xys = np.mgrid[0:h, 0:w].reshape(2, -1).transpose() distss = [] for image_path in tqdm.tqdm(image_paths): parse_img = cv2.imread(image_path.replace('ori_imgs', 'parsing').replace('.jpg', '.png')) bg = (parse_img[..., 0] == 255) & (parse_img[..., 1] == 255) & (parse_img[..., 2] == 255) fg_xys = np.stack(np.nonzero(~bg)).transpose(1, 0) nbrs = NearestNeighbors(n_neighbors=1, algorithm='kd_tree').fit(fg_xys) dists, _ = nbrs.kneighbors(all_xys) distss.append(dists) distss = np.stack(distss) max_dist = np.max(distss, 0) max_id = np.argmax(distss, 0) bc_pixs = max_dist > 5 bc_pixs_id = np.nonzero(bc_pixs) bc_ids = max_id[bc_pixs] imgs = [] num_pixs = distss.shape[1] for image_path in image_paths: img = cv2.imread(image_path) imgs.append(img) imgs = np.stack(imgs).reshape(-1, num_pixs, 3) bc_img = np.zeros((h*w, 3), dtype=np.uint8) bc_img[bc_pixs_id, :] = imgs[bc_ids, bc_pixs_id, :] bc_img = bc_img.reshape(h, w, 3) max_dist = max_dist.reshape(h, w) bc_pixs = max_dist > 5 bg_xys = np.stack(np.nonzero(~bc_pixs)).transpose() fg_xys = np.stack(np.nonzero(bc_pixs)).transpose() nbrs = NearestNeighbors(n_neighbors=1, algorithm='kd_tree').fit(fg_xys) distances, indices = nbrs.kneighbors(bg_xys) bg_fg_xys = fg_xys[indices[:, 0]] bc_img[bg_xys[:, 0], bg_xys[:, 1], :] = bc_img[bg_fg_xys[:, 0], bg_fg_xys[:, 1], :] cv2.imwrite(os.path.join(base_dir, 'bc.jpg'), bc_img) print(f'[INFO] ===== extracted background image =====') def extract_torso_and_gt(base_dir, ori_imgs_dir): print(f'[INFO] ===== extract torso and gt images for {base_dir} =====') from scipy.ndimage import binary_erosion, binary_dilation # load bg bg_image = cv2.imread(os.path.join(base_dir, 'bc.jpg'), cv2.IMREAD_UNCHANGED) image_paths = glob.glob(os.path.join(ori_imgs_dir, '*.jpg')) for image_path in tqdm.tqdm(image_paths): # read ori image ori_image = cv2.imread(image_path, cv2.IMREAD_UNCHANGED) # [H, W, 3] # read semantics seg = cv2.imread(image_path.replace('ori_imgs', 'parsing').replace('.jpg', '.png')) head_part = (seg[..., 0] == 255) & (seg[..., 1] == 0) & (seg[..., 2] == 0) neck_part = (seg[..., 0] == 0) & (seg[..., 1] == 255) & (seg[..., 2] == 0) torso_part = (seg[..., 0] == 0) & (seg[..., 1] == 0) & (seg[..., 2] == 255) bg_part = (seg[..., 0] == 255) & (seg[..., 1] == 255) & (seg[..., 2] == 255) # get gt image gt_image = ori_image.copy() gt_image[bg_part] = bg_image[bg_part] cv2.imwrite(image_path.replace('ori_imgs', 'gt_imgs'), gt_image) # get torso image torso_image = gt_image.copy() # rgb torso_image[head_part] = bg_image[head_part] torso_alpha = 255 * np.ones((gt_image.shape[0], gt_image.shape[1], 1), dtype=np.uint8) # alpha # torso part "vertical" in-painting... L = 8 + 1 torso_coords = np.stack(np.nonzero(torso_part), axis=-1) # [M, 2] # lexsort: sort 2D coords first by y then by x, # ref: https://stackoverflow.com/questions/2706605/sorting-a-2d-numpy-array-by-multiple-axes inds = np.lexsort((torso_coords[:, 0], torso_coords[:, 1])) torso_coords = torso_coords[inds] # choose the top pixel for each column u, uid, ucnt = np.unique(torso_coords[:, 1], return_index=True, return_counts=True) top_torso_coords = torso_coords[uid] # [m, 2] # only keep top-is-head pixels top_torso_coords_up = top_torso_coords.copy() - np.array([1, 0]) mask = head_part[tuple(top_torso_coords_up.T)] if mask.any(): top_torso_coords = top_torso_coords[mask] # get the color top_torso_colors = gt_image[tuple(top_torso_coords.T)] # [m, 3] # construct inpaint coords (vertically up, or minus in x) inpaint_torso_coords = top_torso_coords[None].repeat(L, 0) # [L, m, 2] inpaint_offsets = np.stack([-np.arange(L), np.zeros(L, dtype=np.int32)], axis=-1)[:, None] # [L, 1, 2] inpaint_torso_coords += inpaint_offsets inpaint_torso_coords = inpaint_torso_coords.reshape(-1, 2) # [Lm, 2] inpaint_torso_colors = top_torso_colors[None].repeat(L, 0) # [L, m, 3] darken_scaler = 0.98 ** np.arange(L).reshape(L, 1, 1) # [L, 1, 1] inpaint_torso_colors = (inpaint_torso_colors * darken_scaler).reshape(-1, 3) # [Lm, 3] # set color torso_image[tuple(inpaint_torso_coords.T)] = inpaint_torso_colors inpaint_torso_mask = np.zeros_like(torso_image[..., 0]).astype(bool) inpaint_torso_mask[tuple(inpaint_torso_coords.T)] = True else: inpaint_torso_mask = None # neck part "vertical" in-painting... push_down = 4 L = 48 + push_down + 1 neck_part = binary_dilation(neck_part, structure=np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=bool), iterations=3) neck_coords = np.stack(np.nonzero(neck_part), axis=-1) # [M, 2] # lexsort: sort 2D coords first by y then by x, # ref: https://stackoverflow.com/questions/2706605/sorting-a-2d-numpy-array-by-multiple-axes inds = np.lexsort((neck_coords[:, 0], neck_coords[:, 1])) neck_coords = neck_coords[inds] # choose the top pixel for each column u, uid, ucnt = np.unique(neck_coords[:, 1], return_index=True, return_counts=True) top_neck_coords = neck_coords[uid] # [m, 2] # only keep top-is-head pixels top_neck_coords_up = top_neck_coords.copy() - np.array([1, 0]) mask = head_part[tuple(top_neck_coords_up.T)] top_neck_coords = top_neck_coords[mask] # push these top down for 4 pixels to make the neck inpainting more natural... offset_down = np.minimum(ucnt[mask] - 1, push_down) top_neck_coords += np.stack([offset_down, np.zeros_like(offset_down)], axis=-1) # get the color top_neck_colors = gt_image[tuple(top_neck_coords.T)] # [m, 3] # construct inpaint coords (vertically up, or minus in x) inpaint_neck_coords = top_neck_coords[None].repeat(L, 0) # [L, m, 2] inpaint_offsets = np.stack([-np.arange(L), np.zeros(L, dtype=np.int32)], axis=-1)[:, None] # [L, 1, 2] inpaint_neck_coords += inpaint_offsets inpaint_neck_coords = inpaint_neck_coords.reshape(-1, 2) # [Lm, 2] inpaint_neck_colors = top_neck_colors[None].repeat(L, 0) # [L, m, 3] darken_scaler = 0.98 ** np.arange(L).reshape(L, 1, 1) # [L, 1, 1] inpaint_neck_colors = (inpaint_neck_colors * darken_scaler).reshape(-1, 3) # [Lm, 3] # set color torso_image[tuple(inpaint_neck_coords.T)] = inpaint_neck_colors # apply blurring to the inpaint area to avoid vertical-line artifects... inpaint_mask = np.zeros_like(torso_image[..., 0]).astype(bool) inpaint_mask[tuple(inpaint_neck_coords.T)] = True blur_img = torso_image.copy() blur_img = cv2.GaussianBlur(blur_img, (5, 5), cv2.BORDER_DEFAULT) torso_image[inpaint_mask] = blur_img[inpaint_mask] # set mask mask = (neck_part | torso_part | inpaint_mask) if inpaint_torso_mask is not None: mask = mask | inpaint_torso_mask torso_image[~mask] = 0 torso_alpha[~mask] = 0 cv2.imwrite(image_path.replace('ori_imgs', 'torso_imgs').replace('.jpg', '.png'), np.concatenate([torso_image, torso_alpha], axis=-1)) print(f'[INFO] ===== extracted torso and gt images =====') def face_tracking(ori_imgs_dir): print(f'[INFO] ===== perform face tracking =====') image_paths = glob.glob(os.path.join(ori_imgs_dir, '*.jpg')) # read one image to get H/W tmp_image = cv2.imread(image_paths[0], cv2.IMREAD_UNCHANGED) # [H, W, 3] h, w = tmp_image.shape[:2] cmd = f'python data_utils/face_tracking/face_tracker.py --path={ori_imgs_dir} --img_h={h} --img_w={w} --frame_num={len(image_paths)}' os.system(cmd) print(f'[INFO] ===== finished face tracking =====') def save_transforms(base_dir, ori_imgs_dir): print(f'[INFO] ===== save transforms =====') import torch image_paths = glob.glob(os.path.join(ori_imgs_dir, '*.jpg')) # read one image to get H/W tmp_image = cv2.imread(image_paths[0], cv2.IMREAD_UNCHANGED) # [H, W, 3] h, w = tmp_image.shape[:2] params_dict = torch.load(os.path.join(base_dir, 'track_params.pt')) focal_len = params_dict['focal'] euler_angle = params_dict['euler'] trans = params_dict['trans'] / 10.0 valid_num = euler_angle.shape[0] def euler2rot(euler_angle): batch_size = euler_angle.shape[0] theta = euler_angle[:, 0].reshape(-1, 1, 1) phi = euler_angle[:, 1].reshape(-1, 1, 1) psi = euler_angle[:, 2].reshape(-1, 1, 1) one = torch.ones((batch_size, 1, 1), dtype=torch.float32, device=euler_angle.device) zero = torch.zeros((batch_size, 1, 1), dtype=torch.float32, device=euler_angle.device) rot_x = torch.cat(( torch.cat((one, zero, zero), 1), torch.cat((zero, theta.cos(), theta.sin()), 1), torch.cat((zero, -theta.sin(), theta.cos()), 1), ), 2) rot_y = torch.cat(( torch.cat((phi.cos(), zero, -phi.sin()), 1), torch.cat((zero, one, zero), 1), torch.cat((phi.sin(), zero, phi.cos()), 1), ), 2) rot_z = torch.cat(( torch.cat((psi.cos(), -psi.sin(), zero), 1), torch.cat((psi.sin(), psi.cos(), zero), 1), torch.cat((zero, zero, one), 1) ), 2) return torch.bmm(rot_x, torch.bmm(rot_y, rot_z)) # train_val_split = int(valid_num*0.5) # train_val_split = valid_num - 25 * 20 # take the last 20s as valid set. train_val_split = int(valid_num * 10 / 11) train_ids = torch.arange(0, train_val_split) val_ids = torch.arange(train_val_split, valid_num) rot = euler2rot(euler_angle) rot_inv = rot.permute(0, 2, 1) trans_inv = -torch.bmm(rot_inv, trans.unsqueeze(2)) pose = torch.eye(4, dtype=torch.float32) save_ids = ['train', 'val'] train_val_ids = [train_ids, val_ids] mean_z = -float(torch.mean(trans[:, 2]).item()) for split in range(2): transform_dict = dict() transform_dict['focal_len'] = float(focal_len[0]) transform_dict['cx'] = float(w/2.0) transform_dict['cy'] = float(h/2.0) transform_dict['frames'] = [] ids = train_val_ids[split] save_id = save_ids[split] for i in ids: i = i.item() frame_dict = dict() frame_dict['img_id'] = i frame_dict['aud_id'] = i pose[:3, :3] = rot_inv[i] pose[:3, 3] = trans_inv[i, :, 0] frame_dict['transform_matrix'] = pose.numpy().tolist() transform_dict['frames'].append(frame_dict) with open(os.path.join(base_dir, 'transforms_' + save_id + '.json'), 'w') as fp: json.dump(transform_dict, fp, indent=2, separators=(',', ': ')) print(f'[INFO] ===== finished saving transforms =====') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('path', type=str, help="path to video file") parser.add_argument('--task', type=int, default=-1, help="-1 means all") parser.add_argument('--asr', type=str, default='wav2vec', help="wav2vec or deepspeech") opt = parser.parse_args() base_dir = os.path.dirname(opt.path) wav_path = os.path.join(base_dir, 'aud.wav') ori_imgs_dir = os.path.join(base_dir, 'ori_imgs') parsing_dir = os.path.join(base_dir, 'parsing') gt_imgs_dir = os.path.join(base_dir, 'gt_imgs') torso_imgs_dir = os.path.join(base_dir, 'torso_imgs') os.makedirs(ori_imgs_dir, exist_ok=True) os.makedirs(parsing_dir, exist_ok=True) os.makedirs(gt_imgs_dir, exist_ok=True) os.makedirs(torso_imgs_dir, exist_ok=True) # extract audio if opt.task == -1 or opt.task == 1: extract_audio(opt.path, wav_path) # extract audio features if opt.task == -1 or opt.task == 2: extract_audio_features(wav_path, mode=opt.asr) # extract images if opt.task == -1 or opt.task == 3: extract_images(opt.path, ori_imgs_dir) # face parsing if opt.task == -1 or opt.task == 4: extract_semantics(ori_imgs_dir, parsing_dir) # extract bg if opt.task == -1 or opt.task == 5: extract_background(base_dir, ori_imgs_dir) # extract torso images and gt_images if opt.task == -1 or opt.task == 6: extract_torso_and_gt(base_dir, ori_imgs_dir) # extract face landmarks if opt.task == -1 or opt.task == 7: extract_landmarks(ori_imgs_dir) # face tracking if opt.task == -1 or opt.task == 8: face_tracking(ori_imgs_dir) # save transforms.json if opt.task == -1 or opt.task == 9: save_transforms(base_dir, ori_imgs_dir)