import time import torch import numpy as np import queue from queue import Queue import multiprocessing as mp from baseasr import BaseASR from wav2lip import audio class LipASR(BaseASR): def run_step(self): ############################################## extract audio feature ############################################## # get a frame of audio for _ in range(self.batch_size*2): frame,type = self.get_audio_frame() self.frames.append(frame) # put to output self.output_queue.put((frame,type)) # context not enough, do not run network. if len(self.frames) <= self.stride_left_size + self.stride_right_size: return inputs = np.concatenate(self.frames) # [N * chunk] mel = audio.melspectrogram(inputs) #print(mel.shape[0],mel.shape,len(mel[0]),len(self.frames)) # cut off stride left = max(0, self.stride_left_size*80/50) right = min(len(mel[0]), len(mel[0]) - self.stride_right_size*80/50) mel_idx_multiplier = 80.*2/self.fps mel_step_size = 16 i = 0 mel_chunks = [] while i < (len(self.frames)-self.stride_left_size-self.stride_right_size)/2: start_idx = int(left + i * mel_idx_multiplier) #print(start_idx) if start_idx + mel_step_size > len(mel[0]): mel_chunks.append(mel[:, len(mel[0]) - mel_step_size:]) else: mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size]) i += 1 self.feat_queue.put(mel_chunks) # discard the old part to save memory self.frames = self.frames[-(self.stride_left_size + self.stride_right_size):]