import os import cv2 import numpy as np import torch ffmpeg_path = os.getenv('FFMPEG_PATH') if ffmpeg_path is None: print("please download ffmpeg-static and export to FFMPEG_PATH. \nFor example: export FFMPEG_PATH=/musetalk/ffmpeg-4.4-amd64-static") elif ffmpeg_path not in os.getenv('PATH'): print("add ffmpeg to path") os.environ["PATH"] = f"{ffmpeg_path}:{os.environ['PATH']}" from musetalk.whisper.audio2feature import Audio2Feature from musetalk.models.vae import VAE from musetalk.models.unet import UNet,PositionalEncoding def load_all_model(): audio_processor = Audio2Feature(model_path="./models/whisper/tiny.pt") vae = VAE(model_path = "./models/sd-vae-ft-mse/") unet = UNet(unet_config="./models/musetalk/musetalk.json", model_path ="./models/musetalk/pytorch_model.bin") pe = PositionalEncoding(d_model=384) return audio_processor,vae,unet,pe def get_file_type(video_path): _, ext = os.path.splitext(video_path) if ext.lower() in ['.jpg', '.jpeg', '.png', '.bmp', '.tif', '.tiff']: return 'image' elif ext.lower() in ['.avi', '.mp4', '.mov', '.flv', '.mkv']: return 'video' else: return 'unsupported' def get_video_fps(video_path): video = cv2.VideoCapture(video_path) fps = video.get(cv2.CAP_PROP_FPS) video.release() return fps def datagen(whisper_chunks, vae_encode_latents, batch_size=8, delay_frame=0): whisper_batch, latent_batch = [], [] for i, w in enumerate(whisper_chunks): idx = (i+delay_frame)%len(vae_encode_latents) latent = vae_encode_latents[idx] whisper_batch.append(w) latent_batch.append(latent) if len(latent_batch) >= batch_size: whisper_batch = np.stack(whisper_batch) latent_batch = torch.cat(latent_batch, dim=0) yield whisper_batch, latent_batch whisper_batch, latent_batch = [], [] # the last batch may smaller than batch size if len(latent_batch) > 0: whisper_batch = np.stack(whisper_batch) latent_batch = torch.cat(latent_batch, dim=0) yield whisper_batch, latent_batch