import time import numpy as np import queue from queue import Queue import multiprocessing as mp from baseasr import BaseASR from musetalk.whisper.audio2feature import Audio2Feature class MuseASR(BaseASR): def __init__(self, opt, audio_processor:Audio2Feature): super().__init__(opt) self.audio_processor = audio_processor def run_step(self): ############################################## extract audio feature ############################################## start_time = time.time() for _ in range(self.batch_size*2): audio_frame,type=self.get_audio_frame() self.frames.append(audio_frame) self.output_queue.put((audio_frame,type)) if len(self.frames) <= self.stride_left_size + self.stride_right_size: return inputs = np.concatenate(self.frames) # [N * chunk] whisper_feature = self.audio_processor.audio2feat(inputs) # for feature in whisper_feature: # self.audio_feats.append(feature) #print(f"processing audio costs {(time.time() - start_time) * 1000}ms, inputs shape:{inputs.shape} whisper_feature len:{len(whisper_feature)}") whisper_chunks = self.audio_processor.feature2chunks(feature_array=whisper_feature,fps=self.fps/2,batch_size=self.batch_size,start=self.stride_left_size/2 ) #print(f"whisper_chunks len:{len(whisper_chunks)},self.audio_feats len:{len(self.audio_feats)},self.output_queue len:{self.output_queue.qsize()}") #self.audio_feats = self.audio_feats[-(self.stride_left_size + self.stride_right_size):] self.feat_queue.put(whisper_chunks) # discard the old part to save memory self.frames = self.frames[-(self.stride_left_size + self.stride_right_size):]