import torch import torch.nn as nn import torch.nn.functional as F def get_encoder(encoding, input_dim=3, multires=6, degree=4, num_levels=16, level_dim=2, base_resolution=16, log2_hashmap_size=19, desired_resolution=2048, align_corners=False, **kwargs): if encoding == 'None': return lambda x, **kwargs: x, input_dim elif encoding == 'frequency': from .freqencoder import FreqEncoder encoder = FreqEncoder(input_dim=input_dim, degree=multires) elif encoding == 'spherical_harmonics': from .shencoder import SHEncoder encoder = SHEncoder(input_dim=input_dim, degree=degree) elif encoding == 'hashgrid': from .gridencoder import GridEncoder encoder = GridEncoder(input_dim=input_dim, num_levels=num_levels, level_dim=level_dim, base_resolution=base_resolution, log2_hashmap_size=log2_hashmap_size, desired_resolution=desired_resolution, gridtype='hash', align_corners=align_corners) elif encoding == 'tiledgrid': from .gridencoder import GridEncoder encoder = GridEncoder(input_dim=input_dim, num_levels=num_levels, level_dim=level_dim, base_resolution=base_resolution, log2_hashmap_size=log2_hashmap_size, desired_resolution=desired_resolution, gridtype='tiled', align_corners=align_corners) elif encoding == 'ash': from .ashencoder import AshEncoder encoder = AshEncoder(input_dim=input_dim, output_dim=16, log2_hashmap_size=log2_hashmap_size, resolution=desired_resolution) else: raise NotImplementedError('Unknown encoding mode, choose from [None, frequency, spherical_harmonics, hashgrid, tiledgrid]') return encoder, encoder.output_dim