import torch import argparse from .nerf_triplane.provider import NeRFDataset,NeRFDataset_Test from .nerf_triplane.utils import * from .nerf_triplane.network import NeRFNetwork # torch.autograd.set_detect_anomaly(True) # Close tf32 features. Fix low numerical accuracy on rtx30xx gpu. try: torch.backends.cuda.matmul.allow_tf32 = False torch.backends.cudnn.allow_tf32 = False except AttributeError as e: print('Info. This pytorch version is not support with tf32.') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('path', type=str) parser.add_argument('-O', action='store_true', help="equals --fp16 --cuda_ray --exp_eye") parser.add_argument('--test', action='store_true', help="test mode (load model and test dataset)") parser.add_argument('--test_train', action='store_true', help="test mode (load model and train dataset)") parser.add_argument('--data_range', type=int, nargs='*', default=[0, -1], help="data range to use") parser.add_argument('--workspace', type=str, default='workspace') parser.add_argument('--seed', type=int, default=0) parser.add_argument('--pose', type=str, default="data/data_kf.json", help="transforms.json, pose source") parser.add_argument('--au', type=str, default="data/au.csv", help="eye blink area") ### training options parser.add_argument('--iters', type=int, default=200000, help="training iters") parser.add_argument('--lr', type=float, default=1e-2, help="initial learning rate") parser.add_argument('--lr_net', type=float, default=1e-3, help="initial learning rate") parser.add_argument('--ckpt', type=str, default='latest') parser.add_argument('--num_rays', type=int, default=4096 * 16, help="num rays sampled per image for each training step") parser.add_argument('--cuda_ray', action='store_true', help="use CUDA raymarching instead of pytorch") parser.add_argument('--max_steps', type=int, default=16, help="max num steps sampled per ray (only valid when using --cuda_ray)") parser.add_argument('--num_steps', type=int, default=16, help="num steps sampled per ray (only valid when NOT using --cuda_ray)") parser.add_argument('--upsample_steps', type=int, default=0, help="num steps up-sampled per ray (only valid when NOT using --cuda_ray)") parser.add_argument('--update_extra_interval', type=int, default=16, help="iter interval to update extra status (only valid when using --cuda_ray)") parser.add_argument('--max_ray_batch', type=int, default=4096, help="batch size of rays at inference to avoid OOM (only valid when NOT using --cuda_ray)") ### loss set parser.add_argument('--warmup_step', type=int, default=10000, help="warm up steps") parser.add_argument('--amb_aud_loss', type=int, default=1, help="use ambient aud loss") parser.add_argument('--amb_eye_loss', type=int, default=1, help="use ambient eye loss") parser.add_argument('--unc_loss', type=int, default=1, help="use uncertainty loss") parser.add_argument('--lambda_amb', type=float, default=1e-4, help="lambda for ambient loss") ### network backbone options parser.add_argument('--fp16', action='store_true', help="use amp mixed precision training") parser.add_argument('--bg_img', type=str, default='white', help="background image") parser.add_argument('--fbg', action='store_true', help="frame-wise bg") parser.add_argument('--exp_eye', action='store_true', help="explicitly control the eyes") parser.add_argument('--fix_eye', type=float, default=-1, help="fixed eye area, negative to disable, set to 0-0.3 for a reasonable eye") parser.add_argument('--smooth_eye', action='store_true', help="smooth the eye area sequence") parser.add_argument('--torso_shrink', type=float, default=0.8, help="shrink bg coords to allow more flexibility in deform") ### dataset options parser.add_argument('--color_space', type=str, default='srgb', help="Color space, supports (linear, srgb)") parser.add_argument('--preload', type=int, default=0, help="0 means load data from disk on-the-fly, 1 means preload to CPU, 2 means GPU.") # (the default value is for the fox dataset) parser.add_argument('--bound', type=float, default=1, help="assume the scene is bounded in box[-bound, bound]^3, if > 1, will invoke adaptive ray marching.") parser.add_argument('--scale', type=float, default=4, help="scale camera location into box[-bound, bound]^3") parser.add_argument('--offset', type=float, nargs='*', default=[0, 0, 0], help="offset of camera location") parser.add_argument('--dt_gamma', type=float, default=1/256, help="dt_gamma (>=0) for adaptive ray marching. set to 0 to disable, >0 to accelerate rendering (but usually with worse quality)") parser.add_argument('--min_near', type=float, default=0.05, help="minimum near distance for camera") parser.add_argument('--density_thresh', type=float, default=10, help="threshold for density grid to be occupied (sigma)") parser.add_argument('--density_thresh_torso', type=float, default=0.01, help="threshold for density grid to be occupied (alpha)") parser.add_argument('--patch_size', type=int, default=1, help="[experimental] render patches in training, so as to apply LPIPS loss. 1 means disabled, use [64, 32, 16] to enable") parser.add_argument('--init_lips', action='store_true', help="init lips region") parser.add_argument('--finetune_lips', action='store_true', help="use LPIPS and landmarks to fine tune lips region") parser.add_argument('--smooth_lips', action='store_true', help="smooth the enc_a in a exponential decay way...") parser.add_argument('--torso', action='store_true', help="fix head and train torso") parser.add_argument('--head_ckpt', type=str, default='', help="head model") ### GUI options parser.add_argument('--gui', action='store_true', help="start a GUI") parser.add_argument('--W', type=int, default=450, help="GUI width") parser.add_argument('--H', type=int, default=450, help="GUI height") parser.add_argument('--radius', type=float, default=3.35, help="default GUI camera radius from center") parser.add_argument('--fovy', type=float, default=21.24, help="default GUI camera fovy") parser.add_argument('--max_spp', type=int, default=1, help="GUI rendering max sample per pixel") ### else parser.add_argument('--att', type=int, default=2, help="audio attention mode (0 = turn off, 1 = left-direction, 2 = bi-direction)") parser.add_argument('--aud', type=str, default='', help="audio source (empty will load the default, else should be a path to a npy file)") parser.add_argument('--emb', action='store_true', help="use audio class + embedding instead of logits") parser.add_argument('--ind_dim', type=int, default=4, help="individual code dim, 0 to turn off") parser.add_argument('--ind_num', type=int, default=10000, help="number of individual codes, should be larger than training dataset size") parser.add_argument('--ind_dim_torso', type=int, default=8, help="individual code dim, 0 to turn off") parser.add_argument('--amb_dim', type=int, default=2, help="ambient dimension") parser.add_argument('--part', action='store_true', help="use partial training data (1/10)") parser.add_argument('--part2', action='store_true', help="use partial training data (first 15s)") parser.add_argument('--train_camera', action='store_true', help="optimize camera pose") parser.add_argument('--smooth_path', action='store_true', help="brute-force smooth camera pose trajectory with a window size") parser.add_argument('--smooth_path_window', type=int, default=7, help="smoothing window size") # asr parser.add_argument('--asr', action='store_true', help="load asr for real-time app") parser.add_argument('--asr_wav', type=str, default='', help="load the wav and use as input") parser.add_argument('--asr_play', action='store_true', help="play out the audio") parser.add_argument('--asr_model', type=str, default='deepspeech') # parser.add_argument('--asr_model', type=str, default='cpierse/wav2vec2-large-xlsr-53-esperanto') # parser.add_argument('--asr_model', type=str, default='facebook/wav2vec2-large-960h-lv60-self') parser.add_argument('--asr_save_feats', action='store_true') # audio FPS parser.add_argument('--fps', type=int, default=50) # sliding window left-middle-right length (unit: 20ms) parser.add_argument('-l', type=int, default=10) parser.add_argument('-m', type=int, default=50) parser.add_argument('-r', type=int, default=10) opt = parser.parse_args() if opt.O: opt.fp16 = True opt.exp_eye = True if opt.test and False: opt.smooth_path = True opt.smooth_eye = True opt.smooth_lips = True opt.cuda_ray = True # assert opt.cuda_ray, "Only support CUDA ray mode." if opt.patch_size > 1: # assert opt.patch_size > 16, "patch_size should > 16 to run LPIPS loss." assert opt.num_rays % (opt.patch_size ** 2) == 0, "patch_size ** 2 should be dividable by num_rays." # if opt.finetune_lips: # # do not update density grid in finetune stage # opt.update_extra_interval = 1e9 print(opt) seed_everything(opt.seed) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = NeRFNetwork(opt) # manually load state dict for head if opt.torso and opt.head_ckpt != '': model_dict = torch.load(opt.head_ckpt, map_location='cpu')['model'] missing_keys, unexpected_keys = model.load_state_dict(model_dict, strict=False) if len(missing_keys) > 0: print(f"[WARN] missing keys: {missing_keys}") if len(unexpected_keys) > 0: print(f"[WARN] unexpected keys: {unexpected_keys}") # freeze these keys for k, v in model.named_parameters(): if k in model_dict: # print(f'[INFO] freeze {k}, {v.shape}') v.requires_grad = False # print(model) criterion = torch.nn.MSELoss(reduction='none') if opt.test: if opt.gui: metrics = [] # use no metric in GUI for faster initialization... else: # metrics = [PSNRMeter(), LPIPSMeter(device=device)] metrics = [PSNRMeter(), LPIPSMeter(device=device), LMDMeter(backend='fan')] trainer = Trainer('ngp', opt, model, device=device, workspace=opt.workspace, criterion=criterion, fp16=opt.fp16, metrics=metrics, use_checkpoint=opt.ckpt) if opt.test_train: test_set = NeRFDataset(opt, device=device, type='train') # a manual fix to test on the training dataset test_set.training = False test_set.num_rays = -1 test_loader = test_set.dataloader() else: test_loader = NeRFDataset(opt, device=device, type='test').dataloader() # temp fix: for update_extra_states model.aud_features = test_loader._data.auds model.eye_areas = test_loader._data.eye_area if opt.gui: from nerf_triplane.gui import NeRFGUI # we still need test_loader to provide audio features for testing. with NeRFGUI(opt, trainer, test_loader) as gui: gui.render() else: ### test and save video (fast) trainer.test(test_loader) ### evaluate metrics (slow) if test_loader.has_gt: trainer.evaluate(test_loader) else: optimizer = lambda model: torch.optim.AdamW(model.get_params(opt.lr, opt.lr_net), betas=(0, 0.99), eps=1e-8) train_loader = NeRFDataset(opt, device=device, type='train').dataloader() assert len(train_loader) < opt.ind_num, f"[ERROR] dataset too many frames: {len(train_loader)}, please increase --ind_num to this number!" # temp fix: for update_extra_states model.aud_features = train_loader._data.auds model.eye_area = train_loader._data.eye_area model.poses = train_loader._data.poses # decay to 0.1 * init_lr at last iter step if opt.finetune_lips: scheduler = lambda optimizer: optim.lr_scheduler.LambdaLR(optimizer, lambda iter: 0.05 ** (iter / opt.iters)) else: scheduler = lambda optimizer: optim.lr_scheduler.LambdaLR(optimizer, lambda iter: 0.5 ** (iter / opt.iters)) metrics = [PSNRMeter(), LPIPSMeter(device=device)] eval_interval = max(1, int(5000 / len(train_loader))) trainer = Trainer('ngp', opt, model, device=device, workspace=opt.workspace, optimizer=optimizer, criterion=criterion, ema_decay=0.95, fp16=opt.fp16, lr_scheduler=scheduler, scheduler_update_every_step=True, metrics=metrics, use_checkpoint=opt.ckpt, eval_interval=eval_interval) with open(os.path.join(opt.workspace, 'opt.txt'), 'a') as f: f.write(str(opt)) if opt.gui: with NeRFGUI(opt, trainer, train_loader) as gui: gui.render() else: valid_loader = NeRFDataset(opt, device=device, type='val', downscale=1).dataloader() max_epochs = np.ceil(opt.iters / len(train_loader)).astype(np.int32) print(f'[INFO] max_epoch = {max_epochs}') trainer.train(train_loader, valid_loader, max_epochs) # free some mem del train_loader, valid_loader torch.cuda.empty_cache() # also test test_loader = NeRFDataset(opt, device=device, type='test').dataloader() if test_loader.has_gt: trainer.evaluate(test_loader) # blender has gt, so evaluate it. trainer.test(test_loader)