import torch import torch.nn as nn import math import json from diffusers import UNet2DConditionModel import sys import time import numpy as np import os class PositionalEncoding(nn.Module): def __init__(self, d_model=384, max_len=5000): super(PositionalEncoding, self).__init__() pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) self.register_buffer('pe', pe) def forward(self, x): b, seq_len, d_model = x.size() pe = self.pe[:, :seq_len, :] x = x + pe.to(x.device) return x class UNet(): def __init__(self, unet_config, model_path, use_float16=False, ): with open(unet_config, 'r') as f: unet_config = json.load(f) self.model = UNet2DConditionModel(**unet_config) self.pe = PositionalEncoding(d_model=384) self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") weights = torch.load(model_path) if torch.cuda.is_available() else torch.load(model_path, map_location=self.device) self.model.load_state_dict(weights) if use_float16: self.model = self.model.half() self.model.to(self.device) if __name__ == "__main__": unet = UNet()