import time import torch import numpy as np import queue from queue import Queue import multiprocessing as mp from musetalk.whisper.audio2feature import Audio2Feature class MuseASR: def __init__(self, opt, audio_processor:Audio2Feature): self.opt = opt self.fps = opt.fps # 20 ms per frame self.sample_rate = 16000 self.chunk = self.sample_rate // self.fps # 320 samples per chunk (20ms * 16000 / 1000) self.queue = Queue() # self.input_stream = BytesIO() self.output_queue = mp.Queue() self.audio_processor = audio_processor self.batch_size = opt.batch_size self.frames = [] self.stride_left_size = opt.l self.stride_right_size = opt.r self.feat_queue = mp.Queue(5) self.warm_up() def put_audio_frame(self,audio_chunk): #16khz 20ms pcm self.queue.put(audio_chunk) def __get_audio_frame(self): try: frame = self.queue.get(block=True,timeout=0.01) type = 0 #print(f'[INFO] get frame {frame.shape}') except queue.Empty: frame = np.zeros(self.chunk, dtype=np.float32) type = 1 return frame,type def get_audio_out(self): #get origin audio pcm to nerf return self.output_queue.get() def warm_up(self): for _ in range(self.stride_left_size + self.stride_right_size): audio_frame,type=self.__get_audio_frame() self.frames.append(audio_frame) self.output_queue.put((audio_frame,type)) for _ in range(self.stride_left_size): self.output_queue.get() def run_step(self): ############################################## extract audio feature ############################################## start_time = time.time() for _ in range(self.batch_size*2): audio_frame,type=self.__get_audio_frame() self.frames.append(audio_frame) self.output_queue.put((audio_frame,type)) if len(self.frames) <= self.stride_left_size + self.stride_right_size: return inputs = np.concatenate(self.frames) # [N * chunk] whisper_feature = self.audio_processor.audio2feat(inputs) # for feature in whisper_feature: # self.audio_feats.append(feature) #print(f"processing audio costs {(time.time() - start_time) * 1000}ms, inputs shape:{inputs.shape} whisper_feature len:{len(whisper_feature)}") whisper_chunks = self.audio_processor.feature2chunks(feature_array=whisper_feature,fps=self.fps/2,batch_size=self.batch_size,start=self.stride_left_size/2 ) #print(f"whisper_chunks len:{len(whisper_chunks)},self.audio_feats len:{len(self.audio_feats)},self.output_queue len:{self.output_queue.qsize()}") #self.audio_feats = self.audio_feats[-(self.stride_left_size + self.stride_right_size):] self.feat_queue.put(whisper_chunks) # discard the old part to save memory self.frames = self.frames[-(self.stride_left_size + self.stride_right_size):] def get_next_feat(self,block,timeout): return self.feat_queue.get(block,timeout)