from PIL import Image import numpy as np import cv2 from face_parsing import FaceParsing fp = FaceParsing() def get_crop_box(box, expand): x, y, x1, y1 = box x_c, y_c = (x+x1)//2, (y+y1)//2 w, h = x1-x, y1-y s = int(max(w, h)//2*expand) crop_box = [x_c-s, y_c-s, x_c+s, y_c+s] return crop_box, s def face_seg(image): seg_image = fp(image) if seg_image is None: print("error, no person_segment") return None seg_image = seg_image.resize(image.size) return seg_image def get_image(image,face,face_box,upper_boundary_ratio = 0.5,expand=1.2): #print(image.shape) #print(face.shape) body = Image.fromarray(image[:,:,::-1]) face = Image.fromarray(face[:,:,::-1]) x, y, x1, y1 = face_box #print(x1-x,y1-y) crop_box, s = get_crop_box(face_box, expand) x_s, y_s, x_e, y_e = crop_box face_position = (x, y) face_large = body.crop(crop_box) ori_shape = face_large.size mask_image = face_seg(face_large) mask_small = mask_image.crop((x-x_s, y-y_s, x1-x_s, y1-y_s)) mask_image = Image.new('L', ori_shape, 0) mask_image.paste(mask_small, (x-x_s, y-y_s, x1-x_s, y1-y_s)) # keep upper_boundary_ratio of talking area width, height = mask_image.size top_boundary = int(height * upper_boundary_ratio) modified_mask_image = Image.new('L', ori_shape, 0) modified_mask_image.paste(mask_image.crop((0, top_boundary, width, height)), (0, top_boundary)) blur_kernel_size = int(0.1 * ori_shape[0] // 2 * 2) + 1 mask_array = cv2.GaussianBlur(np.array(modified_mask_image), (blur_kernel_size, blur_kernel_size), 0) mask_image = Image.fromarray(mask_array) face_large.paste(face, (x-x_s, y-y_s, x1-x_s, y1-y_s)) body.paste(face_large, crop_box[:2], mask_image) body = np.array(body) return body[:,:,::-1] def get_image_prepare_material(image,face_box,upper_boundary_ratio = 0.5,expand=1.2): body = Image.fromarray(image[:,:,::-1]) x, y, x1, y1 = face_box #print(x1-x,y1-y) crop_box, s = get_crop_box(face_box, expand) x_s, y_s, x_e, y_e = crop_box face_large = body.crop(crop_box) ori_shape = face_large.size mask_image = face_seg(face_large) mask_small = mask_image.crop((x-x_s, y-y_s, x1-x_s, y1-y_s)) mask_image = Image.new('L', ori_shape, 0) mask_image.paste(mask_small, (x-x_s, y-y_s, x1-x_s, y1-y_s)) # keep upper_boundary_ratio of talking area width, height = mask_image.size top_boundary = int(height * upper_boundary_ratio) modified_mask_image = Image.new('L', ori_shape, 0) modified_mask_image.paste(mask_image.crop((0, top_boundary, width, height)), (0, top_boundary)) blur_kernel_size = int(0.1 * ori_shape[0] // 2 * 2) + 1 mask_array = cv2.GaussianBlur(np.array(modified_mask_image), (blur_kernel_size, blur_kernel_size), 0) return mask_array,crop_box def get_image_blending(image,face,face_box,mask_array,crop_box): body = Image.fromarray(image[:,:,::-1]) face = Image.fromarray(face[:,:,::-1]) x, y, x1, y1 = face_box x_s, y_s, x_e, y_e = crop_box face_large = body.crop(crop_box) mask_image = Image.fromarray(mask_array) mask_image = mask_image.convert("L") face_large.paste(face, (x-x_s, y-y_s, x1-x_s, y1-y_s)) body.paste(face_large, crop_box[:2], mask_image) body = np.array(body) return body[:,:,::-1]