import math import torch import numpy as np # from .utils import * import subprocess import os import time import torch.nn.functional as F import cv2 import glob import pickle import copy import queue from queue import Queue from threading import Thread, Event from io import BytesIO import multiprocessing as mp from musetalk.utils.utils import get_file_type, get_video_fps, datagen # from musetalk.utils.preprocessing import get_landmark_and_bbox,read_imgs,coord_placeholder from musetalk.utils.blending import get_image, get_image_prepare_material, get_image_blending from musetalk.utils.utils import load_all_model, load_diffusion_model, load_audio_model from ttsreal import EdgeTTS, VoitsTTS, XTTS from museasr import MuseASR import asyncio from av import AudioFrame, VideoFrame from tqdm import tqdm def read_imgs(img_list): frames = [] print('reading images...') for img_path in tqdm(img_list): frame = cv2.imread(img_path) frames.append(frame) return frames def __mirror_index(size, index): # size = len(self.coord_list_cycle) turn = index // size res = index % size if turn % 2 == 0: return res else: return size - res - 1 def inference(render_event, batch_size, latents_out_path, audio_feat_queue, audio_out_queue, res_frame_queue, ): # vae, unet, pe,timesteps vae, unet, pe = load_diffusion_model() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") timesteps = torch.tensor([0], device=device) pe = pe.half() vae.vae = vae.vae.half() unet.model = unet.model.half() input_latent_list_cycle = torch.load(latents_out_path) length = len(input_latent_list_cycle) index = 0 count = 0 counttime = 0 print('start inference') while True: if render_event.is_set(): starttime = time.perf_counter() try: whisper_chunks = audio_feat_queue.get(block=True, timeout=1) except queue.Empty: continue is_all_silence = True audio_frames = [] for _ in range(batch_size * 2): frame, type = audio_out_queue.get() audio_frames.append((frame, type)) if type == 0: is_all_silence = False if is_all_silence: for i in range(batch_size): res_frame_queue.put((None, __mirror_index(length, index), audio_frames[i * 2:i * 2 + 2])) index = index + 1 else: # print('infer=======') t = time.perf_counter() whisper_batch = np.stack(whisper_chunks) latent_batch = [] for i in range(batch_size): idx = __mirror_index(length, index + i) latent = input_latent_list_cycle[idx] latent_batch.append(latent) latent_batch = torch.cat(latent_batch, dim=0) # for i, (whisper_batch,latent_batch) in enumerate(gen): audio_feature_batch = torch.from_numpy(whisper_batch) audio_feature_batch = audio_feature_batch.to(device=unet.device, dtype=unet.model.dtype) audio_feature_batch = pe(audio_feature_batch) latent_batch = latent_batch.to(dtype=unet.model.dtype) # print('prepare time:',time.perf_counter()-t) # t=time.perf_counter() pred_latents = unet.model(latent_batch, timesteps, encoder_hidden_states=audio_feature_batch).sample # print('unet time:',time.perf_counter()-t) # t=time.perf_counter() recon = vae.decode_latents(pred_latents) # print('vae time:',time.perf_counter()-t) # print('diffusion len=',len(recon)) counttime += (time.perf_counter() - t) count += batch_size # _totalframe += 1 if count >= 100: print(f"------actual avg infer fps:{count / counttime:.4f}") count = 0 counttime = 0 for i, res_frame in enumerate(recon): # self.__pushmedia(res_frame,loop,audio_track,video_track) res_frame_queue.put((res_frame, __mirror_index(length, index), audio_frames[i * 2:i * 2 + 2])) index = index + 1 # print('total batch time:',time.perf_counter()-starttime) else: time.sleep(1) print('musereal inference processor stop') @torch.no_grad() class MuseReal: def __init__(self, opt): self.opt = opt # shared with the trainer's opt to support in-place modification of rendering parameters. self.W = opt.W self.H = opt.H self.fps = opt.fps # 20 ms per frame #### musetalk self.avatar_id = opt.avatar_id self.static_img = opt.static_img self.video_path = '' # video_path self.bbox_shift = opt.bbox_shift self.avatar_path = f"./data/avatars/{self.avatar_id}" self.full_imgs_path = f"{self.avatar_path}/full_imgs" self.coords_path = f"{self.avatar_path}/coords.pkl" self.latents_out_path = f"{self.avatar_path}/latents.pt" self.video_out_path = f"{self.avatar_path}/vid_output/" self.mask_out_path = f"{self.avatar_path}/mask" self.mask_coords_path = f"{self.avatar_path}/mask_coords.pkl" self.avatar_info_path = f"{self.avatar_path}/avator_info.json" self.avatar_info = { "avatar_id": self.avatar_id, "video_path": self.video_path, "bbox_shift": self.bbox_shift } self.batch_size = opt.batch_size self.idx = 0 self.res_frame_queue = mp.Queue(self.batch_size * 2) self.__loadmodels() self.__loadavatar() self.asr = MuseASR(opt, self.audio_processor) if opt.tts == "edgetts": self.tts = EdgeTTS(opt, self) elif opt.tts == "gpt-sovits": self.tts = VoitsTTS(opt, self) elif opt.tts == "xtts": self.tts = XTTS(opt, self) # self.__warm_up() self.render_event = mp.Event() mp.Process(target=inference, args=(self.render_event, self.batch_size, self.latents_out_path, self.asr.feat_queue, self.asr.output_queue, self.res_frame_queue, )).start() # self.vae, self.unet, self.pe,self.timesteps def __loadmodels(self): # load model weights self.audio_processor = load_audio_model() # self.audio_processor, self.vae, self.unet, self.pe = load_all_model() # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # self.timesteps = torch.tensor([0], device=device) # self.pe = self.pe.half() # self.vae.vae = self.vae.vae.half() # self.unet.model = self.unet.model.half() def __loadavatar(self): # self.input_latent_list_cycle = torch.load(self.latents_out_path) with open(self.coords_path, 'rb') as f: self.coord_list_cycle = pickle.load(f) input_img_list = glob.glob(os.path.join(self.full_imgs_path, '*.[jpJP][pnPN]*[gG]')) input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0])) self.frame_list_cycle = read_imgs(input_img_list) with open(self.mask_coords_path, 'rb') as f: self.mask_coords_list_cycle = pickle.load(f) input_mask_list = glob.glob(os.path.join(self.mask_out_path, '*.[jpJP][pnPN]*[gG]')) input_mask_list = sorted(input_mask_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0])) self.mask_list_cycle = read_imgs(input_mask_list) def put_msg_txt(self, msg): self.tts.put_msg_txt(msg) def put_audio_frame(self, audio_chunk): # 16khz 20ms pcm self.asr.put_audio_frame(audio_chunk) def __mirror_index(self, index): size = len(self.coord_list_cycle) turn = index // size res = index % size if turn % 2 == 0: return res else: return size - res - 1 def __warm_up(self): self.asr.run_step() whisper_chunks = self.asr.get_next_feat() whisper_batch = np.stack(whisper_chunks) latent_batch = [] for i in range(self.batch_size): idx = self.__mirror_index(self.idx + i) latent = self.input_latent_list_cycle[idx] latent_batch.append(latent) latent_batch = torch.cat(latent_batch, dim=0) print('infer=======') # for i, (whisper_batch,latent_batch) in enumerate(gen): audio_feature_batch = torch.from_numpy(whisper_batch) audio_feature_batch = audio_feature_batch.to(device=self.unet.device, dtype=self.unet.model.dtype) audio_feature_batch = self.pe(audio_feature_batch) latent_batch = latent_batch.to(dtype=self.unet.model.dtype) pred_latents = self.unet.model(latent_batch, self.timesteps, encoder_hidden_states=audio_feature_batch).sample recon = self.vae.decode_latents(pred_latents) def process_frames(self, quit_event, loop=None, audio_track=None, video_track=None): while not quit_event.is_set(): try: res_frame, idx, audio_frames = self.res_frame_queue.get(block=True, timeout=1) except queue.Empty: continue if audio_frames[0][1] == 1 and audio_frames[1][1] == 1: # 全为静音数据,只需要取fullimg if self.static_img: combine_frame = self.frame_list_cycle[0] else: combine_frame = self.frame_list_cycle[idx] else: bbox = self.coord_list_cycle[idx] ori_frame = copy.deepcopy(self.frame_list_cycle[idx]) x1, y1, x2, y2 = bbox try: res_frame = cv2.resize(res_frame.astype(np.uint8), (x2 - x1, y2 - y1)) except: continue mask = self.mask_list_cycle[idx] mask_crop_box = self.mask_coords_list_cycle[idx] # combine_frame = get_image(ori_frame,res_frame,bbox) # t=time.perf_counter() combine_frame = get_image_blending(ori_frame, res_frame, bbox, mask, mask_crop_box) # print('blending time:',time.perf_counter()-t) image = combine_frame # (outputs['image'] * 255).astype(np.uint8) new_frame = VideoFrame.from_ndarray(image, format="bgr24") asyncio.run_coroutine_threadsafe(video_track._queue.put(new_frame), loop) for audio_frame in audio_frames: frame, type = audio_frame frame = (frame * 32767).astype(np.int16) new_frame = AudioFrame(format='s16', layout='mono', samples=frame.shape[0]) new_frame.planes[0].update(frame.tobytes()) new_frame.sample_rate = 16000 # if audio_track._queue.qsize()>10: # time.sleep(0.1) asyncio.run_coroutine_threadsafe(audio_track._queue.put(new_frame), loop) print('musereal process_frames thread stop') def render(self, quit_event, loop=None, audio_track=None, video_track=None): # if self.opt.asr: # self.asr.warm_up() self.tts.render(quit_event) process_thread = Thread(target=self.process_frames, args=(quit_event, loop, audio_track, video_track)) process_thread.start() self.render_event.set() # start infer process render count = 0 totaltime = 0 _starttime = time.perf_counter() # _totalframe=0 while not quit_event.is_set(): # todo # update texture every frame # audio stream thread... t = time.perf_counter() self.asr.run_step() # self.test_step(loop,audio_track,video_track) # totaltime += (time.perf_counter() - t) # count += self.opt.batch_size # if count>=100: # print(f"------actual avg infer fps:{count/totaltime:.4f}") # count=0 # totaltime=0 if video_track._queue.qsize() >= 2 * self.opt.batch_size: print('sleep qsize=', video_track._queue.qsize()) time.sleep(0.04 * self.opt.batch_size * 1.5) # delay = _starttime+_totalframe*0.04-time.perf_counter() #40ms # if delay > 0: # time.sleep(delay) self.render_event.clear() # end infer process render print('musereal thread stop')