# server.py from flask import Flask, render_template,send_from_directory,request, jsonify from flask_sockets import Sockets import base64 import time import json import gevent from gevent import pywsgi from geventwebsocket.handler import WebSocketHandler import os import re import numpy as np from threading import Thread,Event import multiprocessing from aiohttp import web import aiohttp from aiortc import RTCPeerConnection, RTCSessionDescription from webrtc import HumanPlayer import argparse from ernerf.nerf_triplane.provider import NeRFDataset_Test from ernerf.nerf_triplane.utils import * from ernerf.nerf_triplane.network import NeRFNetwork from nerfreal import NeRFReal import shutil import asyncio import edge_tts from typing import Iterator import requests app = Flask(__name__) sockets = Sockets(app) global nerfreal global tts_type global gspeaker async def main(voicename: str, text: str, render): communicate = edge_tts.Communicate(text, voicename) #with open(OUTPUT_FILE, "wb") as file: first = True async for chunk in communicate.stream(): if first: #render.before_push_audio() first = False if chunk["type"] == "audio": render.push_audio(chunk["data"]) #file.write(chunk["data"]) elif chunk["type"] == "WordBoundary": pass def get_speaker(ref_audio,server_url): files = {"wav_file": ("reference.wav", open(ref_audio, "rb"))} response = requests.post(f"{server_url}/clone_speaker", files=files) return response.json() def xtts(text, speaker, language, server_url, stream_chunk_size) -> Iterator[bytes]: start = time.perf_counter() speaker["text"] = text speaker["language"] = language speaker["stream_chunk_size"] = stream_chunk_size # you can reduce it to get faster response, but degrade quality res = requests.post( f"{server_url}/tts_stream", json=speaker, stream=True, ) end = time.perf_counter() print(f"xtts Time to make POST: {end-start}s") if res.status_code != 200: print("Error:", res.text) return first = True for chunk in res.iter_content(chunk_size=960): #24K*20ms*2 if first: end = time.perf_counter() print(f"xtts Time to first chunk: {end-start}s") first = False if chunk: yield chunk print("xtts response.elapsed:", res.elapsed) def gpt_sovits(text, character, language, server_url, emotion) -> Iterator[bytes]: start = time.perf_counter() req={} req["text"] = text req["text_language"] = language req["character"] = character req["emotion"] = emotion #req["stream_chunk_size"] = stream_chunk_size # you can reduce it to get faster response, but degrade quality req["stream"] = True res = requests.post( f"{server_url}/tts", json=req, stream=True, ) end = time.perf_counter() print(f"gpt_sovits Time to make POST: {end-start}s") if res.status_code != 200: print("Error:", res.text) return first = True for chunk in res.iter_content(chunk_size=1280): #32K*20ms*2 if first: end = time.perf_counter() print(f"gpt_sovits Time to first chunk: {end-start}s") first = False if chunk: yield chunk print("gpt_sovits response.elapsed:", res.elapsed) def stream_tts(audio_stream,render): for chunk in audio_stream: if chunk is not None: render.push_audio(chunk) def txt_to_audio(text_): if tts_type == "edgetts": voicename = "zh-CN-YunxiaNeural" text = text_ t = time.time() asyncio.get_event_loop().run_until_complete(main(voicename,text,nerfreal)) print(f'-------edge tts time:{time.time()-t:.4f}s') elif tts_type == "gpt-sovits": #gpt_sovits stream_tts( gpt_sovits( text_, app.config['CHARACTER'], #"test", #character "zh", #en args.language, app.config['TTS_SERVER'], #"http://127.0.0.1:5000", #args.server_url, app.config['EMOTION'], #emotion ), nerfreal ) else: #xtts stream_tts( xtts( text_, gspeaker, "zh-cn", #en args.language, app.config['TTS_SERVER'], #"http://localhost:9000", #args.server_url, "20" #args.stream_chunk_size ), nerfreal ) @sockets.route('/humanecho') def echo_socket(ws): # 获取WebSocket对象 #ws = request.environ.get('wsgi.websocket') # 如果没有获取到,返回错误信息 if not ws: print('未建立连接!') return 'Please use WebSocket' # 否则,循环接收和发送消息 else: print('建立连接!') while True: message = ws.receive() if not message or len(message)==0: return '输入信息为空' else: txt_to_audio(message) def llm_response(message): from llm.LLM import LLM # llm = LLM().init_model('Gemini', model_path= 'gemini-pro',api_key='Your API Key', proxy_url=None) # llm = LLM().init_model('ChatGPT', model_path= 'gpt-3.5-turbo',api_key='Your API Key') llm = LLM().init_model('VllmGPT', model_path= 'THUDM/chatglm3-6b') response = llm.chat(message) print(response) return response @sockets.route('/humanchat') def chat_socket(ws): # 获取WebSocket对象 #ws = request.environ.get('wsgi.websocket') # 如果没有获取到,返回错误信息 if not ws: print('未建立连接!') return 'Please use WebSocket' # 否则,循环接收和发送消息 else: print('建立连接!') while True: message = ws.receive() if len(message)==0: return '输入信息为空' else: res=llm_response(message) txt_to_audio(res) #####webrtc############################### pcs = set() #@app.route('/offer', methods=['POST']) async def offer(request): params = await request.json() offer = RTCSessionDescription(sdp=params["sdp"], type=params["type"]) pc = RTCPeerConnection() pcs.add(pc) @pc.on("connectionstatechange") async def on_connectionstatechange(): print("Connection state is %s" % pc.connectionState) if pc.connectionState == "failed": await pc.close() pcs.discard(pc) player = HumanPlayer(nerfreal) audio_sender = pc.addTrack(player.audio) video_sender = pc.addTrack(player.video) await pc.setRemoteDescription(offer) answer = await pc.createAnswer() await pc.setLocalDescription(answer) #return jsonify({"sdp": pc.localDescription.sdp, "type": pc.localDescription.type}) return web.Response( content_type="application/json", text=json.dumps( {"sdp": pc.localDescription.sdp, "type": pc.localDescription.type} ), ) async def on_shutdown(app): # close peer connections coros = [pc.close() for pc in pcs] await asyncio.gather(*coros) pcs.clear() async def post(url,data): try: async with aiohttp.ClientSession() as session: async with session.post(url,data=data) as response: return await response.text() except aiohttp.ClientError as e: print(f'Error: {e}') async def run(push_url): pc = RTCPeerConnection() pcs.add(pc) @pc.on("connectionstatechange") async def on_connectionstatechange(): print("Connection state is %s" % pc.connectionState) if pc.connectionState == "failed": await pc.close() pcs.discard(pc) player = HumanPlayer(nerfreal) audio_sender = pc.addTrack(player.audio) video_sender = pc.addTrack(player.video) await pc.setLocalDescription(await pc.createOffer()) answer = await post(push_url,pc.localDescription.sdp) await pc.setRemoteDescription(RTCSessionDescription(sdp=answer,type='answer')) ########################################## if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--pose', type=str, default="data/data_kf.json", help="transforms.json, pose source") parser.add_argument('--au', type=str, default="data/au.csv", help="eye blink area") parser.add_argument('--torso_imgs', type=str, default="", help="torso images path") parser.add_argument('-O', action='store_true', help="equals --fp16 --cuda_ray --exp_eye") parser.add_argument('--data_range', type=int, nargs='*', default=[0, -1], help="data range to use") parser.add_argument('--workspace', type=str, default='data/video') parser.add_argument('--seed', type=int, default=0) ### training options parser.add_argument('--ckpt', type=str, default='data/pretrained/ngp_kf.pth') parser.add_argument('--num_rays', type=int, default=4096 * 16, help="num rays sampled per image for each training step") parser.add_argument('--cuda_ray', action='store_true', help="use CUDA raymarching instead of pytorch") parser.add_argument('--max_steps', type=int, default=16, help="max num steps sampled per ray (only valid when using --cuda_ray)") parser.add_argument('--num_steps', type=int, default=16, help="num steps sampled per ray (only valid when NOT using --cuda_ray)") parser.add_argument('--upsample_steps', type=int, default=0, help="num steps up-sampled per ray (only valid when NOT using --cuda_ray)") parser.add_argument('--update_extra_interval', type=int, default=16, help="iter interval to update extra status (only valid when using --cuda_ray)") parser.add_argument('--max_ray_batch', type=int, default=4096, help="batch size of rays at inference to avoid OOM (only valid when NOT using --cuda_ray)") ### loss set parser.add_argument('--warmup_step', type=int, default=10000, help="warm up steps") parser.add_argument('--amb_aud_loss', type=int, default=1, help="use ambient aud loss") parser.add_argument('--amb_eye_loss', type=int, default=1, help="use ambient eye loss") parser.add_argument('--unc_loss', type=int, default=1, help="use uncertainty loss") parser.add_argument('--lambda_amb', type=float, default=1e-4, help="lambda for ambient loss") ### network backbone options parser.add_argument('--fp16', action='store_true', help="use amp mixed precision training") parser.add_argument('--bg_img', type=str, default='white', help="background image") parser.add_argument('--fbg', action='store_true', help="frame-wise bg") parser.add_argument('--exp_eye', action='store_true', help="explicitly control the eyes") parser.add_argument('--fix_eye', type=float, default=-1, help="fixed eye area, negative to disable, set to 0-0.3 for a reasonable eye") parser.add_argument('--smooth_eye', action='store_true', help="smooth the eye area sequence") parser.add_argument('--torso_shrink', type=float, default=0.8, help="shrink bg coords to allow more flexibility in deform") ### dataset options parser.add_argument('--color_space', type=str, default='srgb', help="Color space, supports (linear, srgb)") parser.add_argument('--preload', type=int, default=0, help="0 means load data from disk on-the-fly, 1 means preload to CPU, 2 means GPU.") # (the default value is for the fox dataset) parser.add_argument('--bound', type=float, default=1, help="assume the scene is bounded in box[-bound, bound]^3, if > 1, will invoke adaptive ray marching.") parser.add_argument('--scale', type=float, default=4, help="scale camera location into box[-bound, bound]^3") parser.add_argument('--offset', type=float, nargs='*', default=[0, 0, 0], help="offset of camera location") parser.add_argument('--dt_gamma', type=float, default=1/256, help="dt_gamma (>=0) for adaptive ray marching. set to 0 to disable, >0 to accelerate rendering (but usually with worse quality)") parser.add_argument('--min_near', type=float, default=0.05, help="minimum near distance for camera") parser.add_argument('--density_thresh', type=float, default=10, help="threshold for density grid to be occupied (sigma)") parser.add_argument('--density_thresh_torso', type=float, default=0.01, help="threshold for density grid to be occupied (alpha)") parser.add_argument('--patch_size', type=int, default=1, help="[experimental] render patches in training, so as to apply LPIPS loss. 1 means disabled, use [64, 32, 16] to enable") parser.add_argument('--init_lips', action='store_true', help="init lips region") parser.add_argument('--finetune_lips', action='store_true', help="use LPIPS and landmarks to fine tune lips region") parser.add_argument('--smooth_lips', action='store_true', help="smooth the enc_a in a exponential decay way...") parser.add_argument('--torso', action='store_true', help="fix head and train torso") parser.add_argument('--head_ckpt', type=str, default='', help="head model") ### GUI options parser.add_argument('--gui', action='store_true', help="start a GUI") parser.add_argument('--W', type=int, default=450, help="GUI width") parser.add_argument('--H', type=int, default=450, help="GUI height") parser.add_argument('--radius', type=float, default=3.35, help="default GUI camera radius from center") parser.add_argument('--fovy', type=float, default=21.24, help="default GUI camera fovy") parser.add_argument('--max_spp', type=int, default=1, help="GUI rendering max sample per pixel") ### else parser.add_argument('--att', type=int, default=2, help="audio attention mode (0 = turn off, 1 = left-direction, 2 = bi-direction)") parser.add_argument('--aud', type=str, default='', help="audio source (empty will load the default, else should be a path to a npy file)") parser.add_argument('--emb', action='store_true', help="use audio class + embedding instead of logits") parser.add_argument('--ind_dim', type=int, default=4, help="individual code dim, 0 to turn off") parser.add_argument('--ind_num', type=int, default=10000, help="number of individual codes, should be larger than training dataset size") parser.add_argument('--ind_dim_torso', type=int, default=8, help="individual code dim, 0 to turn off") parser.add_argument('--amb_dim', type=int, default=2, help="ambient dimension") parser.add_argument('--part', action='store_true', help="use partial training data (1/10)") parser.add_argument('--part2', action='store_true', help="use partial training data (first 15s)") parser.add_argument('--train_camera', action='store_true', help="optimize camera pose") parser.add_argument('--smooth_path', action='store_true', help="brute-force smooth camera pose trajectory with a window size") parser.add_argument('--smooth_path_window', type=int, default=7, help="smoothing window size") # asr parser.add_argument('--asr', action='store_true', help="load asr for real-time app") parser.add_argument('--asr_wav', type=str, default='', help="load the wav and use as input") parser.add_argument('--asr_play', action='store_true', help="play out the audio") #parser.add_argument('--asr_model', type=str, default='deepspeech') parser.add_argument('--asr_model', type=str, default='cpierse/wav2vec2-large-xlsr-53-esperanto') # # parser.add_argument('--asr_model', type=str, default='facebook/wav2vec2-large-960h-lv60-self') # parser.add_argument('--asr_model', type=str, default='facebook/hubert-large-ls960-ft') parser.add_argument('--transport', type=str, default='rtcpush') #rtmp webrtc rtcpush parser.add_argument('--push_url', type=str, default='http://localhost:1985/rtc/v1/whip/?app=live&stream=livestream') #rtmp://localhost/live/livestream parser.add_argument('--asr_save_feats', action='store_true') # audio FPS parser.add_argument('--fps', type=int, default=50) # sliding window left-middle-right length (unit: 20ms) parser.add_argument('-l', type=int, default=10) parser.add_argument('-m', type=int, default=8) parser.add_argument('-r', type=int, default=10) parser.add_argument('--fullbody', action='store_true', help="fullbody human") parser.add_argument('--fullbody_img', type=str, default='data/fullbody/img') parser.add_argument('--fullbody_width', type=int, default=580) parser.add_argument('--fullbody_height', type=int, default=1080) parser.add_argument('--fullbody_offset_x', type=int, default=0) parser.add_argument('--fullbody_offset_y', type=int, default=0) parser.add_argument('--customvideo', action='store_true', help="custom video") parser.add_argument('--customvideo_img', type=str, default='data/customvideo/img') parser.add_argument('--customvideo_imgnum', type=int, default=1) parser.add_argument('--tts', type=str, default='edgetts') #xtts gpt-sovits parser.add_argument('--REF_FILE', type=str, default=None) parser.add_argument('--TTS_SERVER', type=str, default='http://localhost:9000') #http://127.0.0.1:5000 parser.add_argument('--CHARACTER', type=str, default='test') parser.add_argument('--EMOTION', type=str, default='default') parser.add_argument('--listenport', type=int, default=8000) opt = parser.parse_args() app.config.from_object(opt) print(app.config) tts_type = opt.tts if tts_type == "xtts": print("Computing the latents for a new reference...") gspeaker = get_speaker(opt.REF_FILE, opt.TTS_SERVER) # assert test mode opt.test = True opt.test_train = False #opt.train_camera =True # explicit smoothing opt.smooth_path = True opt.smooth_lips = True assert opt.pose != '', 'Must provide a pose source' # if opt.O: opt.fp16 = True opt.cuda_ray = True opt.exp_eye = True opt.smooth_eye = True if opt.torso_imgs=='': #no img,use model output opt.torso = True # assert opt.cuda_ray, "Only support CUDA ray mode." opt.asr = True if opt.patch_size > 1: # assert opt.patch_size > 16, "patch_size should > 16 to run LPIPS loss." assert opt.num_rays % (opt.patch_size ** 2) == 0, "patch_size ** 2 should be dividable by num_rays." seed_everything(opt.seed) print(opt) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = NeRFNetwork(opt) criterion = torch.nn.MSELoss(reduction='none') metrics = [] # use no metric in GUI for faster initialization... print(model) trainer = Trainer('ngp', opt, model, device=device, workspace=opt.workspace, criterion=criterion, fp16=opt.fp16, metrics=metrics, use_checkpoint=opt.ckpt) test_loader = NeRFDataset_Test(opt, device=device).dataloader() model.aud_features = test_loader._data.auds model.eye_areas = test_loader._data.eye_area # we still need test_loader to provide audio features for testing. nerfreal = NeRFReal(opt, trainer, test_loader) #txt_to_audio('我是中国人,我来自北京') if opt.transport=='rtmp': thread_quit = Event() rendthrd = Thread(target=nerfreal.render,args=(thread_quit,)) rendthrd.start() ############################################################################# appasync = web.Application() appasync.on_shutdown.append(on_shutdown) appasync.router.add_post("/offer", offer) appasync.router.add_static('/',path='web') def run_server(runner): loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) loop.run_until_complete(runner.setup()) site = web.TCPSite(runner, '0.0.0.0', 8010) loop.run_until_complete(site.start()) if opt.transport=='rtcpush': loop.run_until_complete(run(opt.push_url)) loop.run_forever() Thread(target=run_server, args=(web.AppRunner(appasync),)).start() print('start websocket server') #app.on_shutdown.append(on_shutdown) #app.router.add_post("/offer", offer) server = pywsgi.WSGIServer(('0.0.0.0', opt.listenport), app, handler_class=WebSocketHandler) server.serve_forever()