import time import torch import numpy as np import queue from queue import Queue import multiprocessing as mp from wav2lip import audio class LipASR: def __init__(self, opt): self.opt = opt self.fps = opt.fps # 20 ms per frame self.sample_rate = 16000 self.chunk = self.sample_rate // self.fps # 320 samples per chunk (20ms * 16000 / 1000) self.queue = Queue() # self.input_stream = BytesIO() self.output_queue = mp.Queue() #self.audio_processor = audio_processor self.batch_size = opt.batch_size self.frames = [] self.stride_left_size = opt.l self.stride_right_size = opt.r #self.context_size = 10 self.feat_queue = mp.Queue(5) self.warm_up() def put_audio_frame(self,audio_chunk): #16khz 20ms pcm self.queue.put(audio_chunk) def __get_audio_frame(self): try: frame = self.queue.get(block=True,timeout=0.01) type = 0 #print(f'[INFO] get frame {frame.shape}') except queue.Empty: frame = np.zeros(self.chunk, dtype=np.float32) type = 1 return frame,type def get_audio_out(self): #get origin audio pcm to nerf return self.output_queue.get() def warm_up(self): for _ in range(self.stride_left_size + self.stride_right_size): audio_frame,type=self.__get_audio_frame() self.frames.append(audio_frame) self.output_queue.put((audio_frame,type)) for _ in range(self.stride_left_size): self.output_queue.get() def run_step(self): ############################################## extract audio feature ############################################## # get a frame of audio for _ in range(self.batch_size*2): frame,type = self.__get_audio_frame() self.frames.append(frame) # put to output self.output_queue.put((frame,type)) # context not enough, do not run network. if len(self.frames) <= self.stride_left_size + self.stride_right_size: return inputs = np.concatenate(self.frames) # [N * chunk] mel = audio.melspectrogram(inputs) #print(mel.shape[0],mel.shape,len(mel[0]),len(self.frames)) # cut off stride left = max(0, self.stride_left_size*80/50) right = min(len(mel[0]), len(mel[0]) - self.stride_right_size*80/50) mel_idx_multiplier = 80.*2/self.fps mel_step_size = 16 i = 0 mel_chunks = [] while i < (len(self.frames)-self.stride_left_size-self.stride_right_size)/2: start_idx = int(left + i * mel_idx_multiplier) #print(start_idx) if start_idx + mel_step_size > len(mel[0]): mel_chunks.append(mel[:, len(mel[0]) - mel_step_size:]) else: mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size]) i += 1 self.feat_queue.put(mel_chunks) # discard the old part to save memory self.frames = self.frames[-(self.stride_left_size + self.stride_right_size):] def get_next_feat(self,block,timeout): return self.feat_queue.get(block,timeout)