110 lines
3.3 KiB
Python
110 lines
3.3 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
|
|
def compute_tri_normal(geometry, tris):
|
|
tri_1 = tris[:, 0]
|
|
tri_2 = tris[:, 1]
|
|
tri_3 = tris[:, 2]
|
|
vert_1 = torch.index_select(geometry, 1, tri_1)
|
|
vert_2 = torch.index_select(geometry, 1, tri_2)
|
|
vert_3 = torch.index_select(geometry, 1, tri_3)
|
|
nnorm = torch.cross(vert_2 - vert_1, vert_3 - vert_1, 2)
|
|
normal = nn.functional.normalize(nnorm)
|
|
return normal
|
|
|
|
|
|
def euler2rot(euler_angle):
|
|
batch_size = euler_angle.shape[0]
|
|
theta = euler_angle[:, 0].reshape(-1, 1, 1)
|
|
phi = euler_angle[:, 1].reshape(-1, 1, 1)
|
|
psi = euler_angle[:, 2].reshape(-1, 1, 1)
|
|
one = torch.ones(batch_size, 1, 1).to(euler_angle.device)
|
|
zero = torch.zeros(batch_size, 1, 1).to(euler_angle.device)
|
|
rot_x = torch.cat(
|
|
(
|
|
torch.cat((one, zero, zero), 1),
|
|
torch.cat((zero, theta.cos(), theta.sin()), 1),
|
|
torch.cat((zero, -theta.sin(), theta.cos()), 1),
|
|
),
|
|
2,
|
|
)
|
|
rot_y = torch.cat(
|
|
(
|
|
torch.cat((phi.cos(), zero, -phi.sin()), 1),
|
|
torch.cat((zero, one, zero), 1),
|
|
torch.cat((phi.sin(), zero, phi.cos()), 1),
|
|
),
|
|
2,
|
|
)
|
|
rot_z = torch.cat(
|
|
(
|
|
torch.cat((psi.cos(), -psi.sin(), zero), 1),
|
|
torch.cat((psi.sin(), psi.cos(), zero), 1),
|
|
torch.cat((zero, zero, one), 1),
|
|
),
|
|
2,
|
|
)
|
|
return torch.bmm(rot_x, torch.bmm(rot_y, rot_z))
|
|
|
|
|
|
def rot_trans_pts(geometry, rot, trans):
|
|
rott_geo = torch.bmm(rot, geometry.permute(0, 2, 1)) + trans[:, :, None]
|
|
return rott_geo.permute(0, 2, 1)
|
|
|
|
|
|
def cal_lap_loss(tensor_list, weight_list):
|
|
lap_kernel = (
|
|
torch.Tensor((-0.5, 1.0, -0.5))
|
|
.unsqueeze(0)
|
|
.unsqueeze(0)
|
|
.float()
|
|
.to(tensor_list[0].device)
|
|
)
|
|
loss_lap = 0
|
|
for i in range(len(tensor_list)):
|
|
in_tensor = tensor_list[i]
|
|
in_tensor = in_tensor.view(-1, 1, in_tensor.shape[-1])
|
|
out_tensor = F.conv1d(in_tensor, lap_kernel)
|
|
loss_lap += torch.mean(out_tensor ** 2) * weight_list[i]
|
|
return loss_lap
|
|
|
|
|
|
def proj_pts(rott_geo, focal_length, cxy):
|
|
cx, cy = cxy[0], cxy[1]
|
|
X = rott_geo[:, :, 0]
|
|
Y = rott_geo[:, :, 1]
|
|
Z = rott_geo[:, :, 2]
|
|
fxX = focal_length * X
|
|
fyY = focal_length * Y
|
|
proj_x = -fxX / Z + cx
|
|
proj_y = fyY / Z + cy
|
|
return torch.cat((proj_x[:, :, None], proj_y[:, :, None], Z[:, :, None]), 2)
|
|
|
|
|
|
def forward_rott(geometry, euler_angle, trans):
|
|
rot = euler2rot(euler_angle)
|
|
rott_geo = rot_trans_pts(geometry, rot, trans)
|
|
return rott_geo
|
|
|
|
|
|
def forward_transform(geometry, euler_angle, trans, focal_length, cxy):
|
|
rot = euler2rot(euler_angle)
|
|
rott_geo = rot_trans_pts(geometry, rot, trans)
|
|
proj_geo = proj_pts(rott_geo, focal_length, cxy)
|
|
return proj_geo
|
|
|
|
|
|
def cal_lan_loss(proj_lan, gt_lan):
|
|
return torch.mean((proj_lan - gt_lan) ** 2)
|
|
|
|
|
|
def cal_col_loss(pred_img, gt_img, img_mask):
|
|
pred_img = pred_img.float()
|
|
# loss = torch.sqrt(torch.sum(torch.square(pred_img - gt_img), 3))*img_mask/255
|
|
loss = (torch.sum(torch.square(pred_img - gt_img), 3)) * img_mask / 255
|
|
loss = torch.sum(loss, dim=(1, 2)) / torch.sum(img_mask, dim=(1, 2))
|
|
loss = torch.mean(loss)
|
|
return loss
|