livetalking/llm/Qwen.py

70 lines
2.3 KiB
Python

import os
import openai
'''
`huggingface`连接不上可以使用 `modelscope`
`pip install modelscope`
'''
from modelscope import AutoModelForCausalLM, AutoTokenizer
#from transformers import AutoModelForCausalLM, AutoTokenizer
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
class Qwen:
def __init__(self, model_path="Qwen/Qwen-1_8B-Chat", api_base=None, api_key=None) -> None:
'''暂时不写api版本,与Linly-api相类似,感兴趣可以实现一下'''
# 默认本地推理
self.local = True
# api_base和api_key不为空时使用openapi的方式
if api_key is not None and api_base is not None:
openai.api_base = api_base
openai.api_key = api_key
self.local = False
return
self.model, self.tokenizer = self.init_model(model_path)
self.data = {}
def init_model(self, path="Qwen/Qwen-1_8B-Chat"):
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-1_8B-Chat",
device_map="auto",
trust_remote_code=True).eval()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
return model, tokenizer
def chat(self, question):
# 优先调用qwen openapi的方式
if not self.local:
# 不使用流式回复的请求
response = openai.ChatCompletion.create(
model="Qwen",
messages=[
{"role": "user", "content": question}
],
stream=False,
stop=[]
)
return response.choices[0].message.content
# 默认本地推理
self.data["question"] = f"{question} ### Instruction:{question} ### Response:"
try:
response, history = self.model.chat(self.tokenizer, self.data["question"], history=None)
print(history)
return response
except:
return "对不起,你的请求出错了,请再次尝试。\nSorry, your request has encountered an error. Please try again.\n"
def test():
llm = Qwen(model_path="Qwen/Qwen-1_8B-Chat")
answer = llm.chat(question="如何应对压力?")
print(answer)
if __name__ == '__main__':
test()