70 lines
2.3 KiB
Python
70 lines
2.3 KiB
Python
import os
|
|
import openai
|
|
|
|
'''
|
|
`huggingface`连接不上可以使用 `modelscope`
|
|
`pip install modelscope`
|
|
'''
|
|
from modelscope import AutoModelForCausalLM, AutoTokenizer
|
|
#from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
|
|
|
|
|
|
class Qwen:
|
|
def __init__(self, model_path="Qwen/Qwen-1_8B-Chat", api_base=None, api_key=None) -> None:
|
|
'''暂时不写api版本,与Linly-api相类似,感兴趣可以实现一下'''
|
|
# 默认本地推理
|
|
self.local = True
|
|
|
|
# api_base和api_key不为空时使用openapi的方式
|
|
if api_key is not None and api_base is not None:
|
|
openai.api_base = api_base
|
|
openai.api_key = api_key
|
|
self.local = False
|
|
return
|
|
|
|
self.model, self.tokenizer = self.init_model(model_path)
|
|
self.data = {}
|
|
|
|
def init_model(self, path="Qwen/Qwen-1_8B-Chat"):
|
|
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-1_8B-Chat",
|
|
device_map="auto",
|
|
trust_remote_code=True).eval()
|
|
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
|
|
|
|
return model, tokenizer
|
|
|
|
def chat(self, question):
|
|
# 优先调用qwen openapi的方式
|
|
if not self.local:
|
|
# 不使用流式回复的请求
|
|
response = openai.ChatCompletion.create(
|
|
model="Qwen",
|
|
messages=[
|
|
{"role": "user", "content": question}
|
|
],
|
|
stream=False,
|
|
stop=[]
|
|
)
|
|
return response.choices[0].message.content
|
|
|
|
# 默认本地推理
|
|
self.data["question"] = f"{question} ### Instruction:{question} ### Response:"
|
|
try:
|
|
response, history = self.model.chat(self.tokenizer, self.data["question"], history=None)
|
|
print(history)
|
|
return response
|
|
except:
|
|
return "对不起,你的请求出错了,请再次尝试。\nSorry, your request has encountered an error. Please try again.\n"
|
|
|
|
|
|
def test():
|
|
llm = Qwen(model_path="Qwen/Qwen-1_8B-Chat")
|
|
answer = llm.chat(question="如何应对压力?")
|
|
print(answer)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test()
|