livetalking/llm/Read.me.txt

74 lines
2.7 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

一、cuda11.3容器启动过程
1、拷贝Dockerfile文件到任意磁盘目录然后执行下面的命令
docker build -t nvidia/cuda:11.3.1-cudnn8-devel-ubuntu20.04-jupyter-conda .
docker images
2、启动容器
打开镜像(常规模式--支持使用GPU
docker run -i -t --gpus all nvidia/cuda:11.3.1-cudnn8-devel-ubuntu20.04-jupyter-conda /bin/bash
打开镜像(增强模式--支持使用GPU、映射目录、设置内存
docker run -i -t -v /home/liguopu/:/guopu:rw --gpus all --shm-size 16G nvidia/cuda:11.3.1-cudnn8-devel-ubuntu20.04 /bin/bash
测试环境(使用端口映射,把服务映射出去)
docker run -i -td --name metehuman --gpus -p 8000:8000 all nvidia/cuda:11.3.1-cudnn8-devel-ubuntu20.04-jupyter-conda /bin/bash
正式使用8000端口为业务对外的服务端口根据情况可以自行增加
docker run -it --rm -p 8886:8888 -p 8000:8000 --gpus all nvidia/cuda:11.3.1-cudnn8-devel-ubuntu20.04-jupyter-conda
docker run -itd -p 8886:8888 -p 8000:8000 --gpus all nvidia/cuda:11.3.1-cudnn8-devel-ubuntu20.04-jupyter-conda
docker run -itd --name metehuman -p 8886:8888 -p 8000:8000 --gpus all nvidia/cuda:11.3.1-cudnn8-devel-ubuntu20.04-jupyter-conda
docker run --gpus '"device=vgpu,id=0"' -it --rm nvidia/cuda:11.0-base nvidia-smi
docker run -itd --name metehuman \
-p 8885:8888 -p 8001:8000 \
-e GRANT_SUDO=yes \
-e JUPYTER_ENABLE_LAB=yes \
--user root \
--gpus all \
nvidia/cuda:11.3.1-cudnn8-devel-ubuntu20.04-jupyter-conda
3、查看token
token=$(docker exec -it metehuman jupyter server list | grep -oP '(?<=token=)[a-zA-Z0-9]+')
echo $token
二、启动默认测试镜像
docker pull m11007322/cuda11.3.0-cudnn8-devel-ubuntu20.04-jupyterlab
docker run -it \
-d \
--gpus all \
-p 8887:8888 \
-p 8001:8000 \
--name metehuman2 \
--user root \
-e NB_USER="ubuntu" \
-e CHOWN_HOME=yes \
-e GRANT_SUDO=yes \
-w "/home/${NB_USER}" \
-v "$PWD":"/home/$USER/work" \
m11007322/cuda11.3.0-cudnn8-devel-ubuntu20.04-jupyterlab
三、启动jupter镜像测试
docker run -itd --name test \
-p 8886:8888 -p 8000:8000 \
-e GRANT_SUDO=yes \
-e JUPYTER_ENABLE_LAB=yes \
--user root \
--gpus '"device=vgpu,id=0"' \
nvidia/cuda:11.3.1-cudnn8-devel-ubuntu20.04-jupyter-conda
docker run -it --name test --network=host --dns 8.8.8.8 --dns 8.8.4.4 --rm ubuntu
docker run -it --gpus all --network=host --rm registry.cn-hangzhou.aliyuncs.com/lipku/nerfstream:v1.3
四、查看容器IP
docker inspect bceda087524e | grep IPAddress
curl https://openai.api2d.net/v1/chat/completions \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer fk193752-RlcPi2mBQqPOU5u1F8SFkG2z0gtxD0HS' \
-d '{
"model": "gpt-3.5-turbo",
"messages": [{"role": "user", "content": "你好!给我讲个笑话。"}]
}'