37 lines
1.8 KiB
Python
37 lines
1.8 KiB
Python
import time
|
|
import numpy as np
|
|
|
|
import queue
|
|
from queue import Queue
|
|
import multiprocessing as mp
|
|
from baseasr import BaseASR
|
|
from musetalk.whisper.audio2feature import Audio2Feature
|
|
|
|
class MuseASR(BaseASR):
|
|
def __init__(self, opt, parent,audio_processor:Audio2Feature):
|
|
super().__init__(opt,parent)
|
|
self.audio_processor = audio_processor
|
|
|
|
def run_step(self):
|
|
############################################## extract audio feature ##############################################
|
|
start_time = time.time()
|
|
for _ in range(self.batch_size*2):
|
|
audio_frame,type=self.get_audio_frame()
|
|
self.frames.append(audio_frame)
|
|
self.output_queue.put((audio_frame,type))
|
|
|
|
if len(self.frames) <= self.stride_left_size + self.stride_right_size:
|
|
return
|
|
|
|
inputs = np.concatenate(self.frames) # [N * chunk]
|
|
whisper_feature = self.audio_processor.audio2feat(inputs)
|
|
# for feature in whisper_feature:
|
|
# self.audio_feats.append(feature)
|
|
#print(f"processing audio costs {(time.time() - start_time) * 1000}ms, inputs shape:{inputs.shape} whisper_feature len:{len(whisper_feature)}")
|
|
whisper_chunks = self.audio_processor.feature2chunks(feature_array=whisper_feature,fps=self.fps/2,batch_size=self.batch_size,start=self.stride_left_size/2 )
|
|
#print(f"whisper_chunks len:{len(whisper_chunks)},self.audio_feats len:{len(self.audio_feats)},self.output_queue len:{self.output_queue.qsize()}")
|
|
#self.audio_feats = self.audio_feats[-(self.stride_left_size + self.stride_right_size):]
|
|
self.feat_queue.put(whisper_chunks)
|
|
# discard the old part to save memory
|
|
self.frames = self.frames[-(self.stride_left_size + self.stride_right_size):]
|