319 lines
14 KiB
Python
319 lines
14 KiB
Python
import math
|
||
import torch
|
||
import numpy as np
|
||
|
||
#from .utils import *
|
||
import subprocess
|
||
import os
|
||
import time
|
||
import torch.nn.functional as F
|
||
import cv2
|
||
import glob
|
||
import pickle
|
||
import copy
|
||
|
||
import queue
|
||
from queue import Queue
|
||
from threading import Thread, Event
|
||
from io import BytesIO
|
||
import multiprocessing as mp
|
||
|
||
from musetalk.utils.utils import get_file_type,get_video_fps,datagen
|
||
#from musetalk.utils.preprocessing import get_landmark_and_bbox,read_imgs,coord_placeholder
|
||
from musetalk.utils.blending import get_image,get_image_prepare_material,get_image_blending
|
||
from musetalk.utils.utils import load_all_model,load_diffusion_model,load_audio_model
|
||
from ttsreal import EdgeTTS,VoitsTTS,XTTS
|
||
|
||
from museasr import MuseASR
|
||
import asyncio
|
||
from av import AudioFrame, VideoFrame
|
||
from basereal import BaseReal
|
||
|
||
from tqdm import tqdm
|
||
def read_imgs(img_list):
|
||
frames = []
|
||
print('reading images...')
|
||
for img_path in tqdm(img_list):
|
||
frame = cv2.imread(img_path)
|
||
frames.append(frame)
|
||
return frames
|
||
|
||
def __mirror_index(size, index):
|
||
#size = len(self.coord_list_cycle)
|
||
turn = index // size
|
||
res = index % size
|
||
if turn % 2 == 0:
|
||
return res
|
||
else:
|
||
return size - res - 1
|
||
@torch.no_grad()
|
||
def inference(render_event,batch_size,latents_out_path,audio_feat_queue,audio_out_queue,res_frame_queue,
|
||
): #vae, unet, pe,timesteps
|
||
|
||
vae, unet, pe = load_diffusion_model()
|
||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||
timesteps = torch.tensor([0], device=device)
|
||
pe = pe.half()
|
||
vae.vae = vae.vae.half()
|
||
unet.model = unet.model.half()
|
||
|
||
input_latent_list_cycle = torch.load(latents_out_path)
|
||
length = len(input_latent_list_cycle)
|
||
index = 0
|
||
count=0
|
||
counttime=0
|
||
print('start inference')
|
||
while True:
|
||
if render_event.is_set():
|
||
starttime=time.perf_counter()
|
||
try:
|
||
whisper_chunks = audio_feat_queue.get(block=True, timeout=1)
|
||
except queue.Empty:
|
||
continue
|
||
is_all_silence=True
|
||
audio_frames = []
|
||
for _ in range(batch_size*2):
|
||
frame,type = audio_out_queue.get()
|
||
audio_frames.append((frame,type))
|
||
if type==0:
|
||
is_all_silence=False
|
||
if is_all_silence:
|
||
for i in range(batch_size):
|
||
res_frame_queue.put((None,__mirror_index(length,index),audio_frames[i*2:i*2+2]))
|
||
index = index + 1
|
||
else:
|
||
# print('infer=======')
|
||
t=time.perf_counter()
|
||
whisper_batch = np.stack(whisper_chunks)
|
||
latent_batch = []
|
||
for i in range(batch_size):
|
||
idx = __mirror_index(length,index+i)
|
||
latent = input_latent_list_cycle[idx]
|
||
latent_batch.append(latent)
|
||
latent_batch = torch.cat(latent_batch, dim=0)
|
||
|
||
# for i, (whisper_batch,latent_batch) in enumerate(gen):
|
||
audio_feature_batch = torch.from_numpy(whisper_batch)
|
||
audio_feature_batch = audio_feature_batch.to(device=unet.device,
|
||
dtype=unet.model.dtype)
|
||
audio_feature_batch = pe(audio_feature_batch)
|
||
latent_batch = latent_batch.to(dtype=unet.model.dtype)
|
||
# print('prepare time:',time.perf_counter()-t)
|
||
# t=time.perf_counter()
|
||
|
||
pred_latents = unet.model(latent_batch,
|
||
timesteps,
|
||
encoder_hidden_states=audio_feature_batch).sample
|
||
# print('unet time:',time.perf_counter()-t)
|
||
# t=time.perf_counter()
|
||
recon = vae.decode_latents(pred_latents)
|
||
# print('vae time:',time.perf_counter()-t)
|
||
#print('diffusion len=',len(recon))
|
||
counttime += (time.perf_counter() - t)
|
||
count += batch_size
|
||
#_totalframe += 1
|
||
if count>=100:
|
||
print(f"------actual avg infer fps:{count/counttime:.4f}")
|
||
count=0
|
||
counttime=0
|
||
for i,res_frame in enumerate(recon):
|
||
#self.__pushmedia(res_frame,loop,audio_track,video_track)
|
||
res_frame_queue.put((res_frame,__mirror_index(length,index),audio_frames[i*2:i*2+2]))
|
||
index = index + 1
|
||
#print('total batch time:',time.perf_counter()-starttime)
|
||
else:
|
||
time.sleep(1)
|
||
print('musereal inference processor stop')
|
||
|
||
@torch.no_grad()
|
||
class MuseReal(BaseReal):
|
||
def __init__(self, opt):
|
||
super().__init__(opt)
|
||
#self.opt = opt # shared with the trainer's opt to support in-place modification of rendering parameters.
|
||
self.W = opt.W
|
||
self.H = opt.H
|
||
|
||
self.fps = opt.fps # 20 ms per frame
|
||
|
||
#### musetalk
|
||
self.avatar_id = opt.avatar_id
|
||
self.video_path = '' #video_path
|
||
self.bbox_shift = opt.bbox_shift
|
||
self.avatar_path = f"./data/avatars/{self.avatar_id}"
|
||
self.full_imgs_path = f"{self.avatar_path}/full_imgs"
|
||
self.coords_path = f"{self.avatar_path}/coords.pkl"
|
||
self.latents_out_path= f"{self.avatar_path}/latents.pt"
|
||
self.video_out_path = f"{self.avatar_path}/vid_output/"
|
||
self.mask_out_path =f"{self.avatar_path}/mask"
|
||
self.mask_coords_path =f"{self.avatar_path}/mask_coords.pkl"
|
||
self.avatar_info_path = f"{self.avatar_path}/avator_info.json"
|
||
self.avatar_info = {
|
||
"avatar_id":self.avatar_id,
|
||
"video_path":self.video_path,
|
||
"bbox_shift":self.bbox_shift
|
||
}
|
||
self.batch_size = opt.batch_size
|
||
self.idx = 0
|
||
self.res_frame_queue = mp.Queue(self.batch_size*2)
|
||
self.__loadmodels()
|
||
self.__loadavatar()
|
||
|
||
self.asr = MuseASR(opt,self,self.audio_processor)
|
||
self.asr.warm_up()
|
||
#self.__warm_up()
|
||
|
||
self.render_event = mp.Event()
|
||
mp.Process(target=inference, args=(self.render_event,self.batch_size,self.latents_out_path,
|
||
self.asr.feat_queue,self.asr.output_queue,self.res_frame_queue,
|
||
)).start() #self.vae, self.unet, self.pe,self.timesteps
|
||
|
||
def __loadmodels(self):
|
||
# load model weights
|
||
self.audio_processor= load_audio_model()
|
||
# self.audio_processor, self.vae, self.unet, self.pe = load_all_model()
|
||
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||
# self.timesteps = torch.tensor([0], device=device)
|
||
# self.pe = self.pe.half()
|
||
# self.vae.vae = self.vae.vae.half()
|
||
# self.unet.model = self.unet.model.half()
|
||
|
||
def __loadavatar(self):
|
||
#self.input_latent_list_cycle = torch.load(self.latents_out_path)
|
||
with open(self.coords_path, 'rb') as f:
|
||
self.coord_list_cycle = pickle.load(f)
|
||
input_img_list = glob.glob(os.path.join(self.full_imgs_path, '*.[jpJP][pnPN]*[gG]'))
|
||
input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
|
||
self.frame_list_cycle = read_imgs(input_img_list)
|
||
with open(self.mask_coords_path, 'rb') as f:
|
||
self.mask_coords_list_cycle = pickle.load(f)
|
||
input_mask_list = glob.glob(os.path.join(self.mask_out_path, '*.[jpJP][pnPN]*[gG]'))
|
||
input_mask_list = sorted(input_mask_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
|
||
self.mask_list_cycle = read_imgs(input_mask_list)
|
||
|
||
|
||
def __mirror_index(self, index):
|
||
size = len(self.coord_list_cycle)
|
||
turn = index // size
|
||
res = index % size
|
||
if turn % 2 == 0:
|
||
return res
|
||
else:
|
||
return size - res - 1
|
||
|
||
def __warm_up(self):
|
||
self.asr.run_step()
|
||
whisper_chunks = self.asr.get_next_feat()
|
||
whisper_batch = np.stack(whisper_chunks)
|
||
latent_batch = []
|
||
for i in range(self.batch_size):
|
||
idx = self.__mirror_index(self.idx+i)
|
||
latent = self.input_latent_list_cycle[idx]
|
||
latent_batch.append(latent)
|
||
latent_batch = torch.cat(latent_batch, dim=0)
|
||
print('infer=======')
|
||
# for i, (whisper_batch,latent_batch) in enumerate(gen):
|
||
audio_feature_batch = torch.from_numpy(whisper_batch)
|
||
audio_feature_batch = audio_feature_batch.to(device=self.unet.device,
|
||
dtype=self.unet.model.dtype)
|
||
audio_feature_batch = self.pe(audio_feature_batch)
|
||
latent_batch = latent_batch.to(dtype=self.unet.model.dtype)
|
||
|
||
pred_latents = self.unet.model(latent_batch,
|
||
self.timesteps,
|
||
encoder_hidden_states=audio_feature_batch).sample
|
||
recon = self.vae.decode_latents(pred_latents)
|
||
|
||
|
||
def process_frames(self,quit_event,loop=None,audio_track=None,video_track=None):
|
||
|
||
while not quit_event.is_set():
|
||
try:
|
||
res_frame,idx,audio_frames = self.res_frame_queue.get(block=True, timeout=1)
|
||
except queue.Empty:
|
||
continue
|
||
if audio_frames[0][1]!=0 and audio_frames[1][1]!=0: #全为静音数据,只需要取fullimg
|
||
self.speaking = False
|
||
audiotype = audio_frames[0][1]
|
||
if self.custom_index.get(audiotype) is not None: #有自定义视频
|
||
mirindex = self.mirror_index(len(self.custom_img_cycle[audiotype]),self.custom_index[audiotype])
|
||
combine_frame = self.custom_img_cycle[audiotype][mirindex]
|
||
self.custom_index[audiotype] += 1
|
||
# if not self.custom_opt[audiotype].loop and self.custom_index[audiotype]>=len(self.custom_img_cycle[audiotype]):
|
||
# self.curr_state = 1 #当前视频不循环播放,切换到静音状态
|
||
else:
|
||
combine_frame = self.frame_list_cycle[idx]
|
||
else:
|
||
self.speaking = True
|
||
bbox = self.coord_list_cycle[idx]
|
||
ori_frame = copy.deepcopy(self.frame_list_cycle[idx])
|
||
x1, y1, x2, y2 = bbox
|
||
try:
|
||
res_frame = cv2.resize(res_frame.astype(np.uint8),(x2-x1,y2-y1))
|
||
except:
|
||
continue
|
||
mask = self.mask_list_cycle[idx]
|
||
mask_crop_box = self.mask_coords_list_cycle[idx]
|
||
#combine_frame = get_image(ori_frame,res_frame,bbox)
|
||
#t=time.perf_counter()
|
||
combine_frame = get_image_blending(ori_frame,res_frame,bbox,mask,mask_crop_box)
|
||
#print('blending time:',time.perf_counter()-t)
|
||
|
||
image = combine_frame #(outputs['image'] * 255).astype(np.uint8)
|
||
new_frame = VideoFrame.from_ndarray(image, format="bgr24")
|
||
asyncio.run_coroutine_threadsafe(video_track._queue.put(new_frame), loop)
|
||
if self.recording:
|
||
self.recordq_video.put(new_frame)
|
||
|
||
for audio_frame in audio_frames:
|
||
frame,type = audio_frame
|
||
frame = (frame * 32767).astype(np.int16)
|
||
new_frame = AudioFrame(format='s16', layout='mono', samples=frame.shape[0])
|
||
new_frame.planes[0].update(frame.tobytes())
|
||
new_frame.sample_rate=16000
|
||
# if audio_track._queue.qsize()>10:
|
||
# time.sleep(0.1)
|
||
asyncio.run_coroutine_threadsafe(audio_track._queue.put(new_frame), loop)
|
||
if self.recording:
|
||
self.recordq_audio.put(new_frame)
|
||
print('musereal process_frames thread stop')
|
||
|
||
def render(self,quit_event,loop=None,audio_track=None,video_track=None):
|
||
#if self.opt.asr:
|
||
# self.asr.warm_up()
|
||
|
||
self.tts.render(quit_event)
|
||
self.init_customindex()
|
||
process_thread = Thread(target=self.process_frames, args=(quit_event,loop,audio_track,video_track))
|
||
process_thread.start()
|
||
|
||
self.render_event.set() #start infer process render
|
||
count=0
|
||
totaltime=0
|
||
_starttime=time.perf_counter()
|
||
#_totalframe=0
|
||
while not quit_event.is_set(): #todo
|
||
# update texture every frame
|
||
# audio stream thread...
|
||
t = time.perf_counter()
|
||
self.asr.run_step()
|
||
#self.test_step(loop,audio_track,video_track)
|
||
# totaltime += (time.perf_counter() - t)
|
||
# count += self.opt.batch_size
|
||
# if count>=100:
|
||
# print(f"------actual avg infer fps:{count/totaltime:.4f}")
|
||
# count=0
|
||
# totaltime=0
|
||
if video_track._queue.qsize()>=1.5*self.opt.batch_size:
|
||
print('sleep qsize=',video_track._queue.qsize())
|
||
time.sleep(0.04*video_track._queue.qsize()*0.8)
|
||
# if video_track._queue.qsize()>=5:
|
||
# print('sleep qsize=',video_track._queue.qsize())
|
||
# time.sleep(0.04*video_track._queue.qsize()*0.8)
|
||
|
||
# delay = _starttime+_totalframe*0.04-time.perf_counter() #40ms
|
||
# if delay > 0:
|
||
# time.sleep(delay)
|
||
self.render_event.clear() #end infer process render
|
||
print('musereal thread stop')
|
||
|