livetalking/nerfasr.py

348 lines
14 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import time
import numpy as np
import torch
import torch.nn.functional as F
from transformers import AutoModelForCTC, AutoProcessor, Wav2Vec2Processor, HubertModel
import queue
from queue import Queue
#from collections import deque
from threading import Thread, Event
from baseasr import BaseASR
class NerfASR(BaseASR):
def __init__(self, opt, parent):
super().__init__(opt,parent)
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
if 'esperanto' in self.opt.asr_model:
self.audio_dim = 44
elif 'deepspeech' in self.opt.asr_model:
self.audio_dim = 29
elif 'hubert' in self.opt.asr_model:
self.audio_dim = 1024
else:
self.audio_dim = 32
# prepare context cache
# each segment is (stride_left + ctx + stride_right) * 20ms, latency should be (ctx + stride_right) * 20ms
self.context_size = opt.m
self.stride_left_size = opt.l
self.stride_right_size = opt.r
# pad left frames
if self.stride_left_size > 0:
self.frames.extend([np.zeros(self.chunk, dtype=np.float32)] * self.stride_left_size)
# create wav2vec model
print(f'[INFO] loading ASR model {self.opt.asr_model}...')
if 'hubert' in self.opt.asr_model:
self.processor = Wav2Vec2Processor.from_pretrained(opt.asr_model)
self.model = HubertModel.from_pretrained(opt.asr_model).to(self.device)
else:
self.processor = AutoProcessor.from_pretrained(opt.asr_model)
self.model = AutoModelForCTC.from_pretrained(opt.asr_model).to(self.device)
# the extracted features
# use a loop queue to efficiently record endless features: [f--t---][-------][-------]
self.feat_buffer_size = 4
self.feat_buffer_idx = 0
self.feat_queue = torch.zeros(self.feat_buffer_size * self.context_size, self.audio_dim, dtype=torch.float32, device=self.device)
# TODO: hard coded 16 and 8 window size...
self.front = self.feat_buffer_size * self.context_size - 8 # fake padding
self.tail = 8
# attention window...
self.att_feats = [torch.zeros(self.audio_dim, 16, dtype=torch.float32, device=self.device)] * 4 # 4 zero padding...
# warm up steps needed: mid + right + window_size + attention_size
self.warm_up_steps = self.context_size + self.stride_left_size + self.stride_right_size #+ self.stride_left_size #+ 8 + 2 * 3
def get_audio_frame(self):
try:
frame = self.queue.get(block=False)
type = 0
#print(f'[INFO] get frame {frame.shape}')
except queue.Empty:
if self.parent and self.parent.curr_state>1: #播放自定义音频
frame = self.parent.get_audio_stream(self.parent.curr_state)
type = self.parent.curr_state
else:
frame = np.zeros(self.chunk, dtype=np.float32)
type = 1
return frame,type
def get_next_feat(self): #get audio embedding to nerf
# return a [1/8, 16] window, for the next input to nerf side.
if self.opt.att>0:
while len(self.att_feats) < 8:
# [------f+++t-----]
if self.front < self.tail:
feat = self.feat_queue[self.front:self.tail]
# [++t-----------f+]
else:
feat = torch.cat([self.feat_queue[self.front:], self.feat_queue[:self.tail]], dim=0)
self.front = (self.front + 2) % self.feat_queue.shape[0]
self.tail = (self.tail + 2) % self.feat_queue.shape[0]
# print(self.front, self.tail, feat.shape)
self.att_feats.append(feat.permute(1, 0))
att_feat = torch.stack(self.att_feats, dim=0) # [8, 44, 16]
# discard old
self.att_feats = self.att_feats[1:]
else:
# [------f+++t-----]
if self.front < self.tail:
feat = self.feat_queue[self.front:self.tail]
# [++t-----------f+]
else:
feat = torch.cat([self.feat_queue[self.front:], self.feat_queue[:self.tail]], dim=0)
self.front = (self.front + 2) % self.feat_queue.shape[0]
self.tail = (self.tail + 2) % self.feat_queue.shape[0]
att_feat = feat.permute(1, 0).unsqueeze(0)
return att_feat
def run_step(self):
# get a frame of audio
frame,type = self.get_audio_frame()
self.frames.append(frame)
# put to output
self.output_queue.put((frame,type))
# context not enough, do not run network.
if len(self.frames) < self.stride_left_size + self.context_size + self.stride_right_size:
return
inputs = np.concatenate(self.frames) # [N * chunk]
# discard the old part to save memory
self.frames = self.frames[-(self.stride_left_size + self.stride_right_size):]
#print(f'[INFO] frame_to_text... ')
#t = time.time()
logits, labels, text = self.__frame_to_text(inputs)
#print(f'-------wav2vec time:{time.time()-t:.4f}s')
feats = logits # better lips-sync than labels
# record the feats efficiently.. (no concat, constant memory)
start = self.feat_buffer_idx * self.context_size
end = start + feats.shape[0]
self.feat_queue[start:end] = feats
self.feat_buffer_idx = (self.feat_buffer_idx + 1) % self.feat_buffer_size
# very naive, just concat the text output.
#if text != '':
# self.text = self.text + ' ' + text
# will only run once at ternimation
# if self.terminated:
# self.text += '\n[END]'
# print(self.text)
# if self.opt.asr_save_feats:
# print(f'[INFO] save all feats for training purpose... ')
# feats = torch.cat(self.all_feats, dim=0) # [N, C]
# # print('[INFO] before unfold', feats.shape)
# window_size = 16
# padding = window_size // 2
# feats = feats.view(-1, self.audio_dim).permute(1, 0).contiguous() # [C, M]
# feats = feats.view(1, self.audio_dim, -1, 1) # [1, C, M, 1]
# unfold_feats = F.unfold(feats, kernel_size=(window_size, 1), padding=(padding, 0), stride=(2, 1)) # [1, C * window_size, M / 2 + 1]
# unfold_feats = unfold_feats.view(self.audio_dim, window_size, -1).permute(2, 1, 0).contiguous() # [C, window_size, M / 2 + 1] --> [M / 2 + 1, window_size, C]
# # print('[INFO] after unfold', unfold_feats.shape)
# # save to a npy file
# if 'esperanto' in self.opt.asr_model:
# output_path = self.opt.asr_wav.replace('.wav', '_eo.npy')
# else:
# output_path = self.opt.asr_wav.replace('.wav', '.npy')
# np.save(output_path, unfold_feats.cpu().numpy())
# print(f"[INFO] saved logits to {output_path}")
def __frame_to_text(self, frame):
# frame: [N * 320], N = (context_size + 2 * stride_size)
inputs = self.processor(frame, sampling_rate=self.sample_rate, return_tensors="pt", padding=True)
with torch.no_grad():
result = self.model(inputs.input_values.to(self.device))
if 'hubert' in self.opt.asr_model:
logits = result.last_hidden_state # [B=1, T=pts//320, hid=1024]
else:
logits = result.logits # [1, N - 1, 32]
#print('logits.shape:',logits.shape)
# cut off stride
left = max(0, self.stride_left_size)
right = min(logits.shape[1], logits.shape[1] - self.stride_right_size + 1) # +1 to make sure output is the same length as input.
# do not cut right if terminated.
# if self.terminated:
# right = logits.shape[1]
logits = logits[:, left:right]
# print(frame.shape, inputs.input_values.shape, logits.shape)
#predicted_ids = torch.argmax(logits, dim=-1)
#transcription = self.processor.batch_decode(predicted_ids)[0].lower()
# for esperanto
# labels = np.array(['ŭ', '»', 'c', 'ĵ', 'ñ', '”', '„', '“', 'ǔ', 'o', 'ĝ', 'm', 'k', 'd', 'a', 'ŝ', 'z', 'i', '«', '—', '', 'ĥ', 'f', 'y', 'h', 'j', '|', 'r', 'u', 'ĉ', 's', '', 'fi', 'l', 'p', '', 'g', 'v', 't', 'b', 'n', 'e', '[UNK]', '[PAD]'])
# labels = np.array([' ', ' ', ' ', '-', '|', 'E', 'T', 'A', 'O', 'N', 'I', 'H', 'S', 'R', 'D', 'L', 'U', 'M', 'W', 'C', 'F', 'G', 'Y', 'P', 'B', 'V', 'K', "'", 'X', 'J', 'Q', 'Z'])
# print(''.join(labels[predicted_ids[0].detach().cpu().long().numpy()]))
# print(predicted_ids[0])
# print(transcription)
return logits[0], None,None #predicted_ids[0], transcription # [N,]
def warm_up(self):
print(f'[INFO] warm up ASR live model, expected latency = {self.warm_up_steps / self.fps:.6f}s')
t = time.time()
#for _ in range(self.stride_left_size):
# self.frames.append(np.zeros(self.chunk, dtype=np.float32))
for _ in range(self.warm_up_steps):
self.run_step()
#if torch.cuda.is_available():
# torch.cuda.synchronize()
t = time.time() - t
print(f'[INFO] warm-up done, actual latency = {t:.6f}s')
#self.clear_queue()
#####not used function#####################################
'''
def __init_queue(self):
self.frames = []
self.queue.queue.clear()
self.output_queue.queue.clear()
self.front = self.feat_buffer_size * self.context_size - 8 # fake padding
self.tail = 8
# attention window...
self.att_feats = [torch.zeros(self.audio_dim, 16, dtype=torch.float32, device=self.device)] * 4
def run(self):
self.listen()
while not self.terminated:
self.run_step()
def clear_queue(self):
# clear the queue, to reduce potential latency...
print(f'[INFO] clear queue')
if self.mode == 'live':
self.queue.queue.clear()
if self.play:
self.output_queue.queue.clear()
def listen(self):
# start
if self.mode == 'live' and not self.listening:
print(f'[INFO] starting read frame thread...')
self.process_read_frame.start()
self.listening = True
if self.play and not self.playing:
print(f'[INFO] starting play frame thread...')
self.process_play_frame.start()
self.playing = True
def stop(self):
self.exit_event.set()
if self.play:
self.output_stream.stop_stream()
self.output_stream.close()
if self.playing:
self.process_play_frame.join()
self.playing = False
if self.mode == 'live':
#self.input_stream.stop_stream() todo
self.input_stream.close()
if self.listening:
self.process_read_frame.join()
self.listening = False
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
self.stop()
if self.mode == 'live':
# live mode: also print the result text.
self.text += '\n[END]'
print(self.text)
def _read_frame(stream, exit_event, queue, chunk):
while True:
if exit_event.is_set():
print(f'[INFO] read frame thread ends')
break
frame = stream.read(chunk, exception_on_overflow=False)
frame = np.frombuffer(frame, dtype=np.int16).astype(np.float32) / 32767 # [chunk]
queue.put(frame)
def _play_frame(stream, exit_event, queue, chunk):
while True:
if exit_event.is_set():
print(f'[INFO] play frame thread ends')
break
frame = queue.get()
frame = (frame * 32767).astype(np.int16).tobytes()
stream.write(frame, chunk)
#########################################################
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--wav', type=str, default='')
parser.add_argument('--play', action='store_true', help="play out the audio")
# parser.add_argument('--model', type=str, default='cpierse/wav2vec2-large-xlsr-53-esperanto')
# parser.add_argument('--model', type=str, default='facebook/wav2vec2-large-960h-lv60-self')
parser.add_argument('--model', type=str, default='facebook/hubert-large-ls960-ft')
parser.add_argument('--save_feats', action='store_true')
# audio FPS
parser.add_argument('--fps', type=int, default=50)
# sliding window left-middle-right length.
parser.add_argument('-l', type=int, default=10)
parser.add_argument('-m', type=int, default=50)
parser.add_argument('-r', type=int, default=10)
opt = parser.parse_args()
# fix
opt.asr_wav = opt.wav
opt.asr_play = opt.play
opt.asr_model = opt.model
opt.asr_save_feats = opt.save_feats
if 'deepspeech' in opt.asr_model:
raise ValueError("DeepSpeech features should not use this code to extract...")
with ASR(opt) as asr:
asr.run()
'''