131 lines
4.8 KiB
Python
131 lines
4.8 KiB
Python
import logging
|
|
import glob
|
|
from tqdm import tqdm
|
|
import numpy as np
|
|
import torch
|
|
import cv2
|
|
|
|
|
|
class FaceDetector(object):
|
|
"""An abstract class representing a face detector.
|
|
|
|
Any other face detection implementation must subclass it. All subclasses
|
|
must implement ``detect_from_image``, that return a list of detected
|
|
bounding boxes. Optionally, for speed considerations detect from path is
|
|
recommended.
|
|
"""
|
|
|
|
def __init__(self, device, verbose):
|
|
self.device = device
|
|
self.verbose = verbose
|
|
|
|
if verbose:
|
|
if 'cpu' in device:
|
|
logger = logging.getLogger(__name__)
|
|
logger.warning("Detection running on CPU, this may be potentially slow.")
|
|
|
|
if 'cpu' not in device and 'cuda' not in device:
|
|
if verbose:
|
|
logger.error("Expected values for device are: {cpu, cuda} but got: %s", device)
|
|
raise ValueError
|
|
|
|
def detect_from_image(self, tensor_or_path):
|
|
"""Detects faces in a given image.
|
|
|
|
This function detects the faces present in a provided BGR(usually)
|
|
image. The input can be either the image itself or the path to it.
|
|
|
|
Arguments:
|
|
tensor_or_path {numpy.ndarray, torch.tensor or string} -- the path
|
|
to an image or the image itself.
|
|
|
|
Example::
|
|
|
|
>>> path_to_image = 'data/image_01.jpg'
|
|
... detected_faces = detect_from_image(path_to_image)
|
|
[A list of bounding boxes (x1, y1, x2, y2)]
|
|
>>> image = cv2.imread(path_to_image)
|
|
... detected_faces = detect_from_image(image)
|
|
[A list of bounding boxes (x1, y1, x2, y2)]
|
|
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def detect_from_directory(self, path, extensions=['.jpg', '.png'], recursive=False, show_progress_bar=True):
|
|
"""Detects faces from all the images present in a given directory.
|
|
|
|
Arguments:
|
|
path {string} -- a string containing a path that points to the folder containing the images
|
|
|
|
Keyword Arguments:
|
|
extensions {list} -- list of string containing the extensions to be
|
|
consider in the following format: ``.extension_name`` (default:
|
|
{['.jpg', '.png']}) recursive {bool} -- option wherever to scan the
|
|
folder recursively (default: {False}) show_progress_bar {bool} --
|
|
display a progressbar (default: {True})
|
|
|
|
Example:
|
|
>>> directory = 'data'
|
|
... detected_faces = detect_from_directory(directory)
|
|
{A dictionary of [lists containing bounding boxes(x1, y1, x2, y2)]}
|
|
|
|
"""
|
|
if self.verbose:
|
|
logger = logging.getLogger(__name__)
|
|
|
|
if len(extensions) == 0:
|
|
if self.verbose:
|
|
logger.error("Expected at list one extension, but none was received.")
|
|
raise ValueError
|
|
|
|
if self.verbose:
|
|
logger.info("Constructing the list of images.")
|
|
additional_pattern = '/**/*' if recursive else '/*'
|
|
files = []
|
|
for extension in extensions:
|
|
files.extend(glob.glob(path + additional_pattern + extension, recursive=recursive))
|
|
|
|
if self.verbose:
|
|
logger.info("Finished searching for images. %s images found", len(files))
|
|
logger.info("Preparing to run the detection.")
|
|
|
|
predictions = {}
|
|
for image_path in tqdm(files, disable=not show_progress_bar):
|
|
if self.verbose:
|
|
logger.info("Running the face detector on image: %s", image_path)
|
|
predictions[image_path] = self.detect_from_image(image_path)
|
|
|
|
if self.verbose:
|
|
logger.info("The detector was successfully run on all %s images", len(files))
|
|
|
|
return predictions
|
|
|
|
@property
|
|
def reference_scale(self):
|
|
raise NotImplementedError
|
|
|
|
@property
|
|
def reference_x_shift(self):
|
|
raise NotImplementedError
|
|
|
|
@property
|
|
def reference_y_shift(self):
|
|
raise NotImplementedError
|
|
|
|
@staticmethod
|
|
def tensor_or_path_to_ndarray(tensor_or_path, rgb=True):
|
|
"""Convert path (represented as a string) or torch.tensor to a numpy.ndarray
|
|
|
|
Arguments:
|
|
tensor_or_path {numpy.ndarray, torch.tensor or string} -- path to the image, or the image itself
|
|
"""
|
|
if isinstance(tensor_or_path, str):
|
|
return cv2.imread(tensor_or_path) if not rgb else cv2.imread(tensor_or_path)[..., ::-1]
|
|
elif torch.is_tensor(tensor_or_path):
|
|
# Call cpu in case its coming from cuda
|
|
return tensor_or_path.cpu().numpy()[..., ::-1].copy() if not rgb else tensor_or_path.cpu().numpy()
|
|
elif isinstance(tensor_or_path, np.ndarray):
|
|
return tensor_or_path[..., ::-1].copy() if not rgb else tensor_or_path
|
|
else:
|
|
raise TypeError
|