livetalking/wav2lip/genavatar.py

126 lines
4.2 KiB
Python

from os import listdir, path
import numpy as np
import scipy, cv2, os, sys, argparse
import json, subprocess, random, string
from tqdm import tqdm
from glob import glob
import torch
import pickle
import face_detection
parser = argparse.ArgumentParser(description='Inference code to lip-sync videos in the wild using Wav2Lip models')
parser.add_argument('--img_size', default=96, type=int)
parser.add_argument('--avatar_id', default='wav2lip_avatar1', type=str)
parser.add_argument('--video_path', default='', type=str)
parser.add_argument('--nosmooth', default=False, action='store_true',
help='Prevent smoothing face detections over a short temporal window')
parser.add_argument('--pads', nargs='+', type=int, default=[0, 10, 0, 0],
help='Padding (top, bottom, left, right). Please adjust to include chin at least')
parser.add_argument('--face_det_batch_size', type=int,
help='Batch size for face detection', default=16)
args = parser.parse_args()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('Using {} for inference.'.format(device))
def osmakedirs(path_list):
for path in path_list:
os.makedirs(path) if not os.path.exists(path) else None
def video2imgs(vid_path, save_path, ext = '.png',cut_frame = 10000000):
cap = cv2.VideoCapture(vid_path)
count = 0
while True:
if count > cut_frame:
break
ret, frame = cap.read()
if ret:
cv2.imwrite(f"{save_path}/{count:08d}.png", frame)
count += 1
else:
break
def read_imgs(img_list):
frames = []
print('reading images...')
for img_path in tqdm(img_list):
frame = cv2.imread(img_path)
frames.append(frame)
return frames
def get_smoothened_boxes(boxes, T):
for i in range(len(boxes)):
if i + T > len(boxes):
window = boxes[len(boxes) - T:]
else:
window = boxes[i : i + T]
boxes[i] = np.mean(window, axis=0)
return boxes
def face_detect(images):
detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D,
flip_input=False, device=device)
batch_size = args.face_det_batch_size
while 1:
predictions = []
try:
for i in tqdm(range(0, len(images), batch_size)):
predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
except RuntimeError:
if batch_size == 1:
raise RuntimeError('Image too big to run face detection on GPU. Please use the --resize_factor argument')
batch_size //= 2
print('Recovering from OOM error; New batch size: {}'.format(batch_size))
continue
break
results = []
pady1, pady2, padx1, padx2 = args.pads
for rect, image in zip(predictions, images):
if rect is None:
cv2.imwrite('temp/faulty_frame.jpg', image) # check this frame where the face was not detected.
raise ValueError('Face not detected! Ensure the video contains a face in all the frames.')
y1 = max(0, rect[1] - pady1)
y2 = min(image.shape[0], rect[3] + pady2)
x1 = max(0, rect[0] - padx1)
x2 = min(image.shape[1], rect[2] + padx2)
results.append([x1, y1, x2, y2])
boxes = np.array(results)
if not args.nosmooth: boxes = get_smoothened_boxes(boxes, T=5)
results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)]
del detector
return results
if __name__ == "__main__":
avatar_path = f"./results/avatars/{args.avatar_id}"
full_imgs_path = f"{avatar_path}/full_imgs"
face_imgs_path = f"{avatar_path}/face_imgs"
coords_path = f"{avatar_path}/coords.pkl"
osmakedirs([avatar_path,full_imgs_path,face_imgs_path])
print(args)
#if os.path.isfile(args.video_path):
video2imgs(args.video_path, full_imgs_path, ext = 'png')
input_img_list = sorted(glob(os.path.join(full_imgs_path, '*.[jpJP][pnPN]*[gG]')))
frames = read_imgs(input_img_list)
face_det_results = face_detect(frames)
coord_list = []
idx = 0
for frame,coords in face_det_results:
#x1, y1, x2, y2 = bbox
resized_crop_frame = cv2.resize(frame,(args.img_size, args.img_size)) #,interpolation = cv2.INTER_LANCZOS4)
cv2.imwrite(f"{face_imgs_path}/{idx:08d}.png", resized_crop_frame)
coord_list.append(coords)
idx = idx + 1
with open(coords_path, 'wb') as f:
pickle.dump(coord_list, f)