258 lines
7.2 KiB
Python
258 lines
7.2 KiB
Python
#_base_ = ['../../../_base_/default_runtime.py']
|
|
_base_ = ['default_runtime.py']
|
|
|
|
# runtime
|
|
max_epochs = 270
|
|
stage2_num_epochs = 30
|
|
base_lr = 4e-3
|
|
train_batch_size = 32
|
|
val_batch_size = 32
|
|
|
|
train_cfg = dict(max_epochs=max_epochs, val_interval=10)
|
|
randomness = dict(seed=21)
|
|
|
|
# optimizer
|
|
optim_wrapper = dict(
|
|
type='OptimWrapper',
|
|
optimizer=dict(type='AdamW', lr=base_lr, weight_decay=0.05),
|
|
paramwise_cfg=dict(
|
|
norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True))
|
|
|
|
# learning rate
|
|
param_scheduler = [
|
|
dict(
|
|
type='LinearLR',
|
|
start_factor=1.0e-5,
|
|
by_epoch=False,
|
|
begin=0,
|
|
end=1000),
|
|
dict(
|
|
# use cosine lr from 150 to 300 epoch
|
|
type='CosineAnnealingLR',
|
|
eta_min=base_lr * 0.05,
|
|
begin=max_epochs // 2,
|
|
end=max_epochs,
|
|
T_max=max_epochs // 2,
|
|
by_epoch=True,
|
|
convert_to_iter_based=True),
|
|
]
|
|
|
|
# automatically scaling LR based on the actual training batch size
|
|
auto_scale_lr = dict(base_batch_size=512)
|
|
|
|
# codec settings
|
|
codec = dict(
|
|
type='SimCCLabel',
|
|
input_size=(288, 384),
|
|
sigma=(6., 6.93),
|
|
simcc_split_ratio=2.0,
|
|
normalize=False,
|
|
use_dark=False)
|
|
|
|
# model settings
|
|
model = dict(
|
|
type='TopdownPoseEstimator',
|
|
data_preprocessor=dict(
|
|
type='PoseDataPreprocessor',
|
|
mean=[123.675, 116.28, 103.53],
|
|
std=[58.395, 57.12, 57.375],
|
|
bgr_to_rgb=True),
|
|
backbone=dict(
|
|
_scope_='mmdet',
|
|
type='CSPNeXt',
|
|
arch='P5',
|
|
expand_ratio=0.5,
|
|
deepen_factor=1.,
|
|
widen_factor=1.,
|
|
out_indices=(4, ),
|
|
channel_attention=True,
|
|
norm_cfg=dict(type='SyncBN'),
|
|
act_cfg=dict(type='SiLU'),
|
|
init_cfg=dict(
|
|
type='Pretrained',
|
|
prefix='backbone.',
|
|
checkpoint='https://download.openmmlab.com/mmpose/v1/projects/'
|
|
'rtmpose/cspnext-l_udp-aic-coco_210e-256x192-273b7631_20230130.pth' # noqa: E501
|
|
)),
|
|
head=dict(
|
|
type='RTMCCHead',
|
|
in_channels=1024,
|
|
out_channels=133,
|
|
input_size=codec['input_size'],
|
|
in_featuremap_size=(9, 12),
|
|
simcc_split_ratio=codec['simcc_split_ratio'],
|
|
final_layer_kernel_size=7,
|
|
gau_cfg=dict(
|
|
hidden_dims=256,
|
|
s=128,
|
|
expansion_factor=2,
|
|
dropout_rate=0.,
|
|
drop_path=0.,
|
|
act_fn='SiLU',
|
|
use_rel_bias=False,
|
|
pos_enc=False),
|
|
loss=dict(
|
|
type='KLDiscretLoss',
|
|
use_target_weight=True,
|
|
beta=10.,
|
|
label_softmax=True),
|
|
decoder=codec),
|
|
test_cfg=dict(flip_test=True, ))
|
|
|
|
# base dataset settings
|
|
dataset_type = 'UBody2dDataset'
|
|
data_mode = 'topdown'
|
|
data_root = 'data/UBody/'
|
|
|
|
backend_args = dict(backend='local')
|
|
|
|
scenes = [
|
|
'Magic_show', 'Entertainment', 'ConductMusic', 'Online_class', 'TalkShow',
|
|
'Speech', 'Fitness', 'Interview', 'Olympic', 'TVShow', 'Singing',
|
|
'SignLanguage', 'Movie', 'LiveVlog', 'VideoConference'
|
|
]
|
|
|
|
train_datasets = [
|
|
dict(
|
|
type='CocoWholeBodyDataset',
|
|
data_root='data/coco/',
|
|
data_mode=data_mode,
|
|
ann_file='annotations/coco_wholebody_train_v1.0.json',
|
|
data_prefix=dict(img='train2017/'),
|
|
pipeline=[])
|
|
]
|
|
|
|
for scene in scenes:
|
|
train_dataset = dict(
|
|
type=dataset_type,
|
|
data_root=data_root,
|
|
data_mode=data_mode,
|
|
ann_file=f'annotations/{scene}/train_annotations.json',
|
|
data_prefix=dict(img='images/'),
|
|
pipeline=[],
|
|
sample_interval=10)
|
|
train_datasets.append(train_dataset)
|
|
|
|
# pipelines
|
|
train_pipeline = [
|
|
dict(type='LoadImage', backend_args=backend_args),
|
|
dict(type='GetBBoxCenterScale'),
|
|
dict(type='RandomFlip', direction='horizontal'),
|
|
dict(type='RandomHalfBody'),
|
|
dict(
|
|
type='RandomBBoxTransform', scale_factor=[0.5, 1.5], rotate_factor=90),
|
|
dict(type='TopdownAffine', input_size=codec['input_size']),
|
|
dict(type='mmdet.YOLOXHSVRandomAug'),
|
|
dict(
|
|
type='Albumentation',
|
|
transforms=[
|
|
dict(type='Blur', p=0.1),
|
|
dict(type='MedianBlur', p=0.1),
|
|
dict(
|
|
type='CoarseDropout',
|
|
max_holes=1,
|
|
max_height=0.4,
|
|
max_width=0.4,
|
|
min_holes=1,
|
|
min_height=0.2,
|
|
min_width=0.2,
|
|
p=1.0),
|
|
]),
|
|
dict(type='GenerateTarget', encoder=codec),
|
|
dict(type='PackPoseInputs')
|
|
]
|
|
val_pipeline = [
|
|
dict(type='LoadImage', backend_args=backend_args),
|
|
dict(type='GetBBoxCenterScale'),
|
|
dict(type='TopdownAffine', input_size=codec['input_size']),
|
|
dict(type='PackPoseInputs')
|
|
]
|
|
|
|
train_pipeline_stage2 = [
|
|
dict(type='LoadImage', backend_args=backend_args),
|
|
dict(type='GetBBoxCenterScale'),
|
|
dict(type='RandomFlip', direction='horizontal'),
|
|
dict(type='RandomHalfBody'),
|
|
dict(
|
|
type='RandomBBoxTransform',
|
|
shift_factor=0.,
|
|
scale_factor=[0.5, 1.5],
|
|
rotate_factor=90),
|
|
dict(type='TopdownAffine', input_size=codec['input_size']),
|
|
dict(type='mmdet.YOLOXHSVRandomAug'),
|
|
dict(
|
|
type='Albumentation',
|
|
transforms=[
|
|
dict(type='Blur', p=0.1),
|
|
dict(type='MedianBlur', p=0.1),
|
|
dict(
|
|
type='CoarseDropout',
|
|
max_holes=1,
|
|
max_height=0.4,
|
|
max_width=0.4,
|
|
min_holes=1,
|
|
min_height=0.2,
|
|
min_width=0.2,
|
|
p=0.5),
|
|
]),
|
|
dict(type='GenerateTarget', encoder=codec),
|
|
dict(type='PackPoseInputs')
|
|
]
|
|
|
|
# data loaders
|
|
train_dataloader = dict(
|
|
batch_size=train_batch_size,
|
|
num_workers=10,
|
|
persistent_workers=True,
|
|
sampler=dict(type='DefaultSampler', shuffle=True),
|
|
dataset=dict(
|
|
type='CombinedDataset',
|
|
metainfo=dict(from_file='configs/_base_/datasets/coco_wholebody.py'),
|
|
datasets=train_datasets,
|
|
pipeline=train_pipeline,
|
|
test_mode=False,
|
|
))
|
|
|
|
val_dataloader = dict(
|
|
batch_size=val_batch_size,
|
|
num_workers=10,
|
|
persistent_workers=True,
|
|
drop_last=False,
|
|
sampler=dict(type='DefaultSampler', shuffle=False, round_up=False),
|
|
dataset=dict(
|
|
type='CocoWholeBodyDataset',
|
|
data_root=data_root,
|
|
data_mode=data_mode,
|
|
ann_file='data/coco/annotations/coco_wholebody_val_v1.0.json',
|
|
bbox_file='data/coco/person_detection_results/'
|
|
'COCO_val2017_detections_AP_H_56_person.json',
|
|
data_prefix=dict(img='coco/val2017/'),
|
|
test_mode=True,
|
|
pipeline=val_pipeline,
|
|
))
|
|
test_dataloader = val_dataloader
|
|
|
|
# hooks
|
|
default_hooks = dict(
|
|
checkpoint=dict(
|
|
save_best='coco-wholebody/AP', rule='greater', max_keep_ckpts=1))
|
|
|
|
custom_hooks = [
|
|
dict(
|
|
type='EMAHook',
|
|
ema_type='ExpMomentumEMA',
|
|
momentum=0.0002,
|
|
update_buffers=True,
|
|
priority=49),
|
|
dict(
|
|
type='mmdet.PipelineSwitchHook',
|
|
switch_epoch=max_epochs - stage2_num_epochs,
|
|
switch_pipeline=train_pipeline_stage2)
|
|
]
|
|
|
|
# evaluators
|
|
val_evaluator = dict(
|
|
type='CocoWholeBodyMetric',
|
|
ann_file='data/coco/annotations/coco_wholebody_val_v1.0.json')
|
|
test_evaluator = val_evaluator
|