65 lines
2.1 KiB
Python
65 lines
2.1 KiB
Python
import os
|
|
import cv2
|
|
import numpy as np
|
|
import torch
|
|
|
|
ffmpeg_path = os.getenv('FFMPEG_PATH')
|
|
if ffmpeg_path is None:
|
|
print("please download ffmpeg-static and export to FFMPEG_PATH. \nFor example: export FFMPEG_PATH=/musetalk/ffmpeg-4.4-amd64-static")
|
|
elif ffmpeg_path not in os.getenv('PATH'):
|
|
print("add ffmpeg to path")
|
|
os.environ["PATH"] = f"{ffmpeg_path}:{os.environ['PATH']}"
|
|
|
|
|
|
from musetalk.whisper.audio2feature import Audio2Feature
|
|
from musetalk.models.vae import VAE
|
|
from musetalk.models.unet import UNet,PositionalEncoding
|
|
|
|
def load_all_model():
|
|
audio_processor = Audio2Feature(model_path="./models/whisper/tiny.pt")
|
|
vae = VAE(model_path = "./models/sd-vae-ft-mse/")
|
|
unet = UNet(unet_config="./models/musetalk/musetalk.json",
|
|
model_path ="./models/musetalk/pytorch_model.bin")
|
|
pe = PositionalEncoding(d_model=384)
|
|
return audio_processor,vae,unet,pe
|
|
|
|
def get_file_type(video_path):
|
|
_, ext = os.path.splitext(video_path)
|
|
|
|
if ext.lower() in ['.jpg', '.jpeg', '.png', '.bmp', '.tif', '.tiff']:
|
|
return 'image'
|
|
elif ext.lower() in ['.avi', '.mp4', '.mov', '.flv', '.mkv']:
|
|
return 'video'
|
|
else:
|
|
return 'unsupported'
|
|
|
|
def get_video_fps(video_path):
|
|
video = cv2.VideoCapture(video_path)
|
|
fps = video.get(cv2.CAP_PROP_FPS)
|
|
video.release()
|
|
return fps
|
|
|
|
def datagen(whisper_chunks,
|
|
vae_encode_latents,
|
|
batch_size=8,
|
|
delay_frame=0):
|
|
whisper_batch, latent_batch = [], []
|
|
for i, w in enumerate(whisper_chunks):
|
|
idx = (i+delay_frame)%len(vae_encode_latents)
|
|
latent = vae_encode_latents[idx]
|
|
whisper_batch.append(w)
|
|
latent_batch.append(latent)
|
|
|
|
if len(latent_batch) >= batch_size:
|
|
whisper_batch = np.stack(whisper_batch)
|
|
latent_batch = torch.cat(latent_batch, dim=0)
|
|
yield whisper_batch, latent_batch
|
|
whisper_batch, latent_batch = [], []
|
|
|
|
# the last batch may smaller than batch size
|
|
if len(latent_batch) > 0:
|
|
whisper_batch = np.stack(whisper_batch)
|
|
latent_batch = torch.cat(latent_batch, dim=0)
|
|
|
|
yield whisper_batch, latent_batch
|