livetalking/asrreal.py

523 lines
20 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import time
import numpy as np
import torch
import torch.nn.functional as F
from transformers import AutoModelForCTC, AutoProcessor, Wav2Vec2Processor, HubertModel
#import pyaudio
import soundfile as sf
import resampy
import queue
from queue import Queue
#from collections import deque
from threading import Thread, Event
from io import BytesIO
def _read_frame(stream, exit_event, queue, chunk):
while True:
if exit_event.is_set():
print(f'[INFO] read frame thread ends')
break
frame = stream.read(chunk, exception_on_overflow=False)
frame = np.frombuffer(frame, dtype=np.int16).astype(np.float32) / 32767 # [chunk]
queue.put(frame)
def _play_frame(stream, exit_event, queue, chunk):
while True:
if exit_event.is_set():
print(f'[INFO] play frame thread ends')
break
frame = queue.get()
frame = (frame * 32767).astype(np.int16).tobytes()
stream.write(frame, chunk)
class ASR:
def __init__(self, opt):
self.opt = opt
self.play = opt.asr_play #false
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.fps = opt.fps # 20 ms per frame
self.sample_rate = 16000
self.chunk = self.sample_rate // self.fps # 320 samples per chunk (20ms * 16000 / 1000)
self.mode = 'live' if opt.asr_wav == '' else 'file'
if 'esperanto' in self.opt.asr_model:
self.audio_dim = 44
elif 'deepspeech' in self.opt.asr_model:
self.audio_dim = 29
elif 'hubert' in self.opt.asr_model:
self.audio_dim = 1024
else:
self.audio_dim = 32
# prepare context cache
# each segment is (stride_left + ctx + stride_right) * 20ms, latency should be (ctx + stride_right) * 20ms
self.context_size = opt.m
self.stride_left_size = opt.l
self.stride_right_size = opt.r
self.text = '[START]\n'
self.terminated = False
self.frames = []
self.inwarm = False
# pad left frames
if self.stride_left_size > 0:
self.frames.extend([np.zeros(self.chunk, dtype=np.float32)] * self.stride_left_size)
self.exit_event = Event()
#self.audio_instance = pyaudio.PyAudio() #not need
# create input stream
if self.mode == 'file': #live mode
self.file_stream = self.create_file_stream()
else:
self.queue = Queue()
self.input_stream = BytesIO()
self.output_queue = Queue()
# start a background process to read frames
#self.input_stream = self.audio_instance.open(format=pyaudio.paInt16, channels=1, rate=self.sample_rate, input=True, output=False, frames_per_buffer=self.chunk)
#self.queue = Queue()
#self.process_read_frame = Thread(target=_read_frame, args=(self.input_stream, self.exit_event, self.queue, self.chunk))
# play out the audio too...?
if self.play:
self.output_stream = self.audio_instance.open(format=pyaudio.paInt16, channels=1, rate=self.sample_rate, input=False, output=True, frames_per_buffer=self.chunk)
self.output_queue = Queue()
self.process_play_frame = Thread(target=_play_frame, args=(self.output_stream, self.exit_event, self.output_queue, self.chunk))
# current location of audio
self.idx = 0
# create wav2vec model
print(f'[INFO] loading ASR model {self.opt.asr_model}...')
if 'hubert' in self.opt.asr_model:
self.processor = Wav2Vec2Processor.from_pretrained(opt.asr_model)
self.model = HubertModel.from_pretrained(opt.asr_model).to(self.device)
else:
self.processor = AutoProcessor.from_pretrained(opt.asr_model)
self.model = AutoModelForCTC.from_pretrained(opt.asr_model).to(self.device)
# prepare to save logits
if self.opt.asr_save_feats:
self.all_feats = []
# the extracted features
# use a loop queue to efficiently record endless features: [f--t---][-------][-------]
self.feat_buffer_size = 4
self.feat_buffer_idx = 0
self.feat_queue = torch.zeros(self.feat_buffer_size * self.context_size, self.audio_dim, dtype=torch.float32, device=self.device)
# TODO: hard coded 16 and 8 window size...
self.front = self.feat_buffer_size * self.context_size - 8 # fake padding
self.tail = 8
# attention window...
self.att_feats = [torch.zeros(self.audio_dim, 16, dtype=torch.float32, device=self.device)] * 4 # 4 zero padding...
# warm up steps needed: mid + right + window_size + attention_size
self.warm_up_steps = self.context_size + self.stride_left_size + self.stride_right_size #+ self.stride_left_size #+ 8 + 2 * 3
self.listening = False
self.playing = False
def get_next_feat(self): #get audio embedding to nerf
# return a [1/8, 16] window, for the next input to nerf side.
if self.opt.att>0:
while len(self.att_feats) < 8:
# [------f+++t-----]
if self.front < self.tail:
feat = self.feat_queue[self.front:self.tail]
# [++t-----------f+]
else:
feat = torch.cat([self.feat_queue[self.front:], self.feat_queue[:self.tail]], dim=0)
self.front = (self.front + 2) % self.feat_queue.shape[0]
self.tail = (self.tail + 2) % self.feat_queue.shape[0]
# print(self.front, self.tail, feat.shape)
self.att_feats.append(feat.permute(1, 0))
att_feat = torch.stack(self.att_feats, dim=0) # [8, 44, 16]
# discard old
self.att_feats = self.att_feats[1:]
else:
# [------f+++t-----]
if self.front < self.tail:
feat = self.feat_queue[self.front:self.tail]
# [++t-----------f+]
else:
feat = torch.cat([self.feat_queue[self.front:], self.feat_queue[:self.tail]], dim=0)
self.front = (self.front + 2) % self.feat_queue.shape[0]
self.tail = (self.tail + 2) % self.feat_queue.shape[0]
att_feat = feat.permute(1, 0).unsqueeze(0)
return att_feat
def run_step(self):
if self.terminated:
return
# get a frame of audio
frame = self.__get_audio_frame()
# the last frame
if frame is None:
# terminate, but always run the network for the left frames
self.terminated = True
else:
self.frames.append(frame)
# put to output
self.output_queue.put(frame)
# context not enough, do not run network.
if len(self.frames) < self.stride_left_size + self.context_size + self.stride_right_size:
return
inputs = np.concatenate(self.frames) # [N * chunk]
# discard the old part to save memory
if not self.terminated:
self.frames = self.frames[-(self.stride_left_size + self.stride_right_size):]
print(f'[INFO] frame_to_text... ')
#t = time.time()
logits, labels, text = self.__frame_to_text(inputs)
#print(f'-------wav2vec time:{time.time()-t:.4f}s')
feats = logits # better lips-sync than labels
# save feats
if self.opt.asr_save_feats:
self.all_feats.append(feats)
# record the feats efficiently.. (no concat, constant memory)
start = self.feat_buffer_idx * self.context_size
end = start + feats.shape[0]
self.feat_queue[start:end] = feats
self.feat_buffer_idx = (self.feat_buffer_idx + 1) % self.feat_buffer_size
# very naive, just concat the text output.
#if text != '':
# self.text = self.text + ' ' + text
# will only run once at ternimation
if self.terminated:
self.text += '\n[END]'
print(self.text)
if self.opt.asr_save_feats:
print(f'[INFO] save all feats for training purpose... ')
feats = torch.cat(self.all_feats, dim=0) # [N, C]
# print('[INFO] before unfold', feats.shape)
window_size = 16
padding = window_size // 2
feats = feats.view(-1, self.audio_dim).permute(1, 0).contiguous() # [C, M]
feats = feats.view(1, self.audio_dim, -1, 1) # [1, C, M, 1]
unfold_feats = F.unfold(feats, kernel_size=(window_size, 1), padding=(padding, 0), stride=(2, 1)) # [1, C * window_size, M / 2 + 1]
unfold_feats = unfold_feats.view(self.audio_dim, window_size, -1).permute(2, 1, 0).contiguous() # [C, window_size, M / 2 + 1] --> [M / 2 + 1, window_size, C]
# print('[INFO] after unfold', unfold_feats.shape)
# save to a npy file
if 'esperanto' in self.opt.asr_model:
output_path = self.opt.asr_wav.replace('.wav', '_eo.npy')
else:
output_path = self.opt.asr_wav.replace('.wav', '.npy')
np.save(output_path, unfold_feats.cpu().numpy())
print(f"[INFO] saved logits to {output_path}")
def __get_audio_frame(self):
if self.inwarm: # warm up
return np.zeros(self.chunk, dtype=np.float32)
if self.mode == 'file':
if self.idx < self.file_stream.shape[0]:
frame = self.file_stream[self.idx: self.idx + self.chunk]
self.idx = self.idx + self.chunk
return frame
else:
return None
else:
try:
frame = self.queue.get(block=False)
print(f'[INFO] get frame {frame.shape}')
except queue.Empty:
frame = np.zeros(self.chunk, dtype=np.float32)
self.idx = self.idx + self.chunk
return frame
def __frame_to_text(self, frame):
# frame: [N * 320], N = (context_size + 2 * stride_size)
inputs = self.processor(frame, sampling_rate=self.sample_rate, return_tensors="pt", padding=True)
with torch.no_grad():
result = self.model(inputs.input_values.to(self.device))
if 'hubert' in self.opt.asr_model:
logits = result.last_hidden_state # [B=1, T=pts//320, hid=1024]
else:
logits = result.logits # [1, N - 1, 32]
#print('logits.shape:',logits.shape)
# cut off stride
left = max(0, self.stride_left_size)
right = min(logits.shape[1], logits.shape[1] - self.stride_right_size + 1) # +1 to make sure output is the same length as input.
# do not cut right if terminated.
if self.terminated:
right = logits.shape[1]
logits = logits[:, left:right]
# print(frame.shape, inputs.input_values.shape, logits.shape)
#predicted_ids = torch.argmax(logits, dim=-1)
#transcription = self.processor.batch_decode(predicted_ids)[0].lower()
# for esperanto
# labels = np.array(['ŭ', '»', 'c', 'ĵ', 'ñ', '”', '„', '“', 'ǔ', 'o', 'ĝ', 'm', 'k', 'd', 'a', 'ŝ', 'z', 'i', '«', '—', '', 'ĥ', 'f', 'y', 'h', 'j', '|', 'r', 'u', 'ĉ', 's', '', 'fi', 'l', 'p', '', 'g', 'v', 't', 'b', 'n', 'e', '[UNK]', '[PAD]'])
# labels = np.array([' ', ' ', ' ', '-', '|', 'E', 'T', 'A', 'O', 'N', 'I', 'H', 'S', 'R', 'D', 'L', 'U', 'M', 'W', 'C', 'F', 'G', 'Y', 'P', 'B', 'V', 'K', "'", 'X', 'J', 'Q', 'Z'])
# print(''.join(labels[predicted_ids[0].detach().cpu().long().numpy()]))
# print(predicted_ids[0])
# print(transcription)
return logits[0], None,None #predicted_ids[0], transcription # [N,]
def __create_bytes_stream(self,byte_stream):
#byte_stream=BytesIO(buffer)
stream, sample_rate = sf.read(byte_stream) # [T*sample_rate,] float64
print(f'[INFO]tts audio stream {sample_rate}: {stream.shape}')
stream = stream.astype(np.float32)
if stream.ndim > 1:
print(f'[WARN] audio has {stream.shape[1]} channels, only use the first.')
stream = stream[:, 0]
if sample_rate != self.sample_rate and stream.shape[0]>0:
print(f'[WARN] audio sample rate is {sample_rate}, resampling into {self.sample_rate}.')
stream = resampy.resample(x=stream, sr_orig=sample_rate, sr_new=self.sample_rate)
return stream
def push_audio(self,buffer): #push audio pcm from tts
print(f'[INFO] push_audio {len(buffer)}')
if self.opt.tts == "xtts" or self.opt.tts == "gpt-sovits":
if len(buffer)>0:
stream = np.frombuffer(buffer, dtype=np.int16).astype(np.float32) / 32767
if self.opt.tts == "xtts":
stream = resampy.resample(x=stream, sr_orig=24000, sr_new=self.sample_rate)
else:
stream = resampy.resample(x=stream, sr_orig=32000, sr_new=self.sample_rate)
#byte_stream=BytesIO(buffer)
#stream = self.__create_bytes_stream(byte_stream)
streamlen = stream.shape[0]
idx=0
while streamlen >= self.chunk:
self.queue.put(stream[idx:idx+self.chunk])
streamlen -= self.chunk
idx += self.chunk
# if streamlen>0: #skip last frame(not 20ms)
# self.queue.put(stream[idx:])
else: #edge tts
self.input_stream.write(buffer)
if len(buffer)<=0:
self.input_stream.seek(0)
stream = self.__create_bytes_stream(self.input_stream)
streamlen = stream.shape[0]
idx=0
while streamlen >= self.chunk:
self.queue.put(stream[idx:idx+self.chunk])
streamlen -= self.chunk
idx += self.chunk
#if streamlen>0: #skip last frame(not 20ms)
# self.queue.put(stream[idx:])
self.input_stream.seek(0)
self.input_stream.truncate()
def get_audio_out(self): #get origin audio pcm to nerf
return self.output_queue.get()
def __init_queue(self):
self.frames = []
self.queue.queue.clear()
self.output_queue.queue.clear()
self.front = self.feat_buffer_size * self.context_size - 8 # fake padding
self.tail = 8
# attention window...
self.att_feats = [torch.zeros(self.audio_dim, 16, dtype=torch.float32, device=self.device)] * 4
def before_push_audio(self):
self.__init_queue()
self.warm_up()
def run(self):
self.listen()
while not self.terminated:
self.run_step()
def clear_queue(self):
# clear the queue, to reduce potential latency...
print(f'[INFO] clear queue')
if self.mode == 'live':
self.queue.queue.clear()
if self.play:
self.output_queue.queue.clear()
def warm_up(self):
#self.listen()
self.inwarm = True
print(f'[INFO] warm up ASR live model, expected latency = {self.warm_up_steps / self.fps:.6f}s')
t = time.time()
#for _ in range(self.stride_left_size):
# self.frames.append(np.zeros(self.chunk, dtype=np.float32))
for _ in range(self.warm_up_steps):
self.run_step()
#if torch.cuda.is_available():
# torch.cuda.synchronize()
t = time.time() - t
print(f'[INFO] warm-up done, actual latency = {t:.6f}s')
self.inwarm = False
#self.clear_queue()
'''
def create_file_stream(self):
stream, sample_rate = sf.read(self.opt.asr_wav) # [T*sample_rate,] float64
stream = stream.astype(np.float32)
if stream.ndim > 1:
print(f'[WARN] audio has {stream.shape[1]} channels, only use the first.')
stream = stream[:, 0]
if sample_rate != self.sample_rate:
print(f'[WARN] audio sample rate is {sample_rate}, resampling into {self.sample_rate}.')
stream = resampy.resample(x=stream, sr_orig=sample_rate, sr_new=self.sample_rate)
print(f'[INFO] loaded audio stream {self.opt.asr_wav}: {stream.shape}')
return stream
def create_pyaudio_stream(self):
import pyaudio
print(f'[INFO] creating live audio stream ...')
audio = pyaudio.PyAudio()
# get devices
info = audio.get_host_api_info_by_index(0)
n_devices = info.get('deviceCount')
for i in range(0, n_devices):
if (audio.get_device_info_by_host_api_device_index(0, i).get('maxInputChannels')) > 0:
name = audio.get_device_info_by_host_api_device_index(0, i).get('name')
print(f'[INFO] choose audio device {name}, id {i}')
break
# get stream
stream = audio.open(input_device_index=i,
format=pyaudio.paInt16,
channels=1,
rate=self.sample_rate,
input=True,
frames_per_buffer=self.chunk)
return audio, stream
'''
#####not used function#####################################
def listen(self):
# start
if self.mode == 'live' and not self.listening:
print(f'[INFO] starting read frame thread...')
self.process_read_frame.start()
self.listening = True
if self.play and not self.playing:
print(f'[INFO] starting play frame thread...')
self.process_play_frame.start()
self.playing = True
def stop(self):
self.exit_event.set()
if self.play:
self.output_stream.stop_stream()
self.output_stream.close()
if self.playing:
self.process_play_frame.join()
self.playing = False
if self.mode == 'live':
#self.input_stream.stop_stream() todo
self.input_stream.close()
if self.listening:
self.process_read_frame.join()
self.listening = False
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
self.stop()
if self.mode == 'live':
# live mode: also print the result text.
self.text += '\n[END]'
print(self.text)
#########################################################
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--wav', type=str, default='')
parser.add_argument('--play', action='store_true', help="play out the audio")
# parser.add_argument('--model', type=str, default='cpierse/wav2vec2-large-xlsr-53-esperanto')
# parser.add_argument('--model', type=str, default='facebook/wav2vec2-large-960h-lv60-self')
parser.add_argument('--model', type=str, default='facebook/hubert-large-ls960-ft')
parser.add_argument('--save_feats', action='store_true')
# audio FPS
parser.add_argument('--fps', type=int, default=50)
# sliding window left-middle-right length.
parser.add_argument('-l', type=int, default=10)
parser.add_argument('-m', type=int, default=50)
parser.add_argument('-r', type=int, default=10)
opt = parser.parse_args()
# fix
opt.asr_wav = opt.wav
opt.asr_play = opt.play
opt.asr_model = opt.model
opt.asr_save_feats = opt.save_feats
if 'deepspeech' in opt.asr_model:
raise ValueError("DeepSpeech features should not use this code to extract...")
with ASR(opt) as asr:
asr.run()