115 lines
3.7 KiB
Markdown
115 lines
3.7 KiB
Markdown
A streaming digital human based on the Ernerf model, realize audio video synchronous dialogue. It can basically achieve commercial effects.
|
||
基于ernerf模型的流式数字人,实现音视频同步对话。基本可以达到商用效果
|
||
|
||
[![Watch the video]](/assets/demo.mp4)
|
||
|
||
## 1. Installation
|
||
|
||
Tested on Ubuntu 20.04, Python3.10, Pytorch 1.12 and CUDA 11.3
|
||
|
||
### 1.1 Install dependency
|
||
|
||
```bash
|
||
conda create -n nerfstream python=3.10
|
||
conda install pytorch==1.12.1 torchvision==0.13.1 cudatoolkit=11.3 -c pytorch
|
||
conda activate nerfstream
|
||
pip install -r requirements.txt
|
||
pip install "git+https://github.com/facebookresearch/pytorch3d.git"
|
||
pip install tensorflow-gpu==2.8.0
|
||
```
|
||
linux cuda环境搭建可以参考这篇文章 https://zhuanlan.zhihu.com/p/674972886
|
||
|
||
### 1.2 安装rtmpstream库
|
||
参照 https://github.com/lipku/python_rtmpstream
|
||
|
||
|
||
## 2. Run
|
||
|
||
### 2.1 运行rtmpserver (srs)
|
||
```
|
||
docker run --rm -it -p 1935:1935 -p 1985:1985 -p 8080:8080 registry.cn-hangzhou.aliyuncs.com/ossrs/srs:5
|
||
```
|
||
|
||
### 2.2 启动数字人:
|
||
|
||
```python
|
||
python app.py
|
||
```
|
||
|
||
如果访问不了huggingface,在运行前
|
||
```
|
||
export HF_ENDPOINT=https://hf-mirror.com
|
||
```
|
||
|
||
运行成功后,用vlc访问rtmp://serverip/live/livestream
|
||
|
||
### 2.3 网页端数字人播报输入文字
|
||
安装并启动nginx
|
||
```
|
||
apt install nginx
|
||
nginx
|
||
```
|
||
将echo.html和mpegts-1.7.3.min.js拷到/var/www/html下
|
||
|
||
用浏览器打开http://serverip/echo.html, 在文本框输入任意文字,提交。数字人播报该段文字
|
||
|
||
### 2.4 使用LLM模型进行数字人对话
|
||
|
||
目前借鉴数字人对话系统[LinlyTalker](https://github.com/Kedreamix/Linly-Talker)的方式,LLM模型支持Chatgpt,Qwen和GeminiPro。需要在app.py中填入自己的api_key。
|
||
安装并启动nginx,将chat.html和mpegts-1.7.3.min.js拷到/var/www/html下
|
||
|
||
用浏览器打开http://serverip/chat.html
|
||
|
||
### 2.5 使用本地tts服务,支持声音克隆
|
||
运行xtts服务,参照 https://github.com/coqui-ai/xtts-streaming-server
|
||
```
|
||
docker run --gpus=all -e COQUI_TOS_AGREED=1 --rm -p 9000:80 ghcr.io/coqui-ai/xtts-streaming-server:latest
|
||
```
|
||
然后运行,其中ref.wav为需要克隆的声音文件
|
||
```
|
||
python app.py --tts xtts --ref_file data/ref.wav
|
||
```
|
||
|
||
## 3. Docker Run
|
||
不需要第1步的安装,直接运行。
|
||
```
|
||
docker run --gpus all -it --network=host --rm registry.cn-hangzhou.aliyuncs.com/lipku/nerfstream:v1.3
|
||
```
|
||
srs和nginx的运行同2.1和2.3
|
||
|
||
## 4. Data flow
|
||
![](/assets/dataflow.png)
|
||
|
||
## 5. 数字人模型文件
|
||
可以替换成自己训练的模型(https://github.com/Fictionarry/ER-NeRF)
|
||
```python
|
||
.
|
||
├── data
|
||
│ ├── data_kf.json
|
||
│ ├── au.csv
|
||
│ ├── pretrained
|
||
│ └── └── ngp_kf.pth
|
||
|
||
```
|
||
|
||
## 6. 性能分析
|
||
1. 帧率
|
||
在Tesla T4显卡上测试整体fps为18左右,如果去掉音视频编码推流,帧率在20左右。用4090显卡应该能达到25帧,欢迎有显卡资源的同学提供数据。
|
||
优化:新开一个线程运行音视频编码推流
|
||
2. 延时
|
||
整体延时5s多
|
||
(1)tts延时2s左右,目前用的edgetts,需要将每句话转完后一次性输入,可以优化tts改成流式输入
|
||
(2)wav2vec延时1s多,需要缓存50帧音频做计算,可以通过-m设置context_size来减少延时
|
||
(3)srs转发延时,设置srs服务器减少缓冲延时。具体配置可看 https://ossrs.net/lts/zh-cn/docs/v5/doc/low-latency, 配置了一个低延时版本
|
||
```python
|
||
docker run --rm -it -p 1935:1935 -p 1985:1985 -p 8080:8080 registry.cn-hangzhou.aliyuncs.com/lipku/srs:v1.1
|
||
```
|
||
|
||
## 7. TODO
|
||
- [x] 添加chatgpt实现数字人对话
|
||
- [x] 声音克隆
|
||
- [ ] 数字人静音时用一段视频代替
|
||
|
||
如果本项目对你有帮助,帮忙点个star。也欢迎感兴趣的朋友一起来完善该项目。
|
||
Email: lipku@foxmail.com
|