48 lines
1.5 KiB
Python
Executable File
48 lines
1.5 KiB
Python
Executable File
import torch
|
|
import torch.nn as nn
|
|
import math
|
|
import json
|
|
|
|
from diffusers import UNet2DConditionModel
|
|
import sys
|
|
import time
|
|
import numpy as np
|
|
import os
|
|
|
|
class PositionalEncoding(nn.Module):
|
|
def __init__(self, d_model=384, max_len=5000):
|
|
super(PositionalEncoding, self).__init__()
|
|
pe = torch.zeros(max_len, d_model)
|
|
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
|
|
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
|
|
pe[:, 0::2] = torch.sin(position * div_term)
|
|
pe[:, 1::2] = torch.cos(position * div_term)
|
|
pe = pe.unsqueeze(0)
|
|
self.register_buffer('pe', pe)
|
|
|
|
def forward(self, x):
|
|
b, seq_len, d_model = x.size()
|
|
pe = self.pe[:, :seq_len, :]
|
|
x = x + pe.to(x.device)
|
|
return x
|
|
|
|
class UNet():
|
|
def __init__(self,
|
|
unet_config,
|
|
model_path,
|
|
use_float16=False,
|
|
):
|
|
with open(unet_config, 'r') as f:
|
|
unet_config = json.load(f)
|
|
self.model = UNet2DConditionModel(**unet_config)
|
|
self.pe = PositionalEncoding(d_model=384)
|
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
weights = torch.load(model_path) if torch.cuda.is_available() else torch.load(model_path, map_location=self.device)
|
|
self.model.load_state_dict(weights)
|
|
if use_float16:
|
|
self.model = self.model.half()
|
|
self.model.to(self.device)
|
|
|
|
if __name__ == "__main__":
|
|
unet = UNet()
|