480 lines
18 KiB
Python
480 lines
18 KiB
Python
import time
|
||
import numpy as np
|
||
import torch
|
||
import torch.nn.functional as F
|
||
from transformers import AutoModelForCTC, AutoProcessor
|
||
|
||
#import pyaudio
|
||
import soundfile as sf
|
||
import resampy
|
||
|
||
import queue
|
||
from queue import Queue
|
||
#from collections import deque
|
||
from threading import Thread, Event
|
||
from io import BytesIO
|
||
|
||
|
||
def _read_frame(stream, exit_event, queue, chunk):
|
||
|
||
while True:
|
||
if exit_event.is_set():
|
||
print(f'[INFO] read frame thread ends')
|
||
break
|
||
frame = stream.read(chunk, exception_on_overflow=False)
|
||
frame = np.frombuffer(frame, dtype=np.int16).astype(np.float32) / 32767 # [chunk]
|
||
queue.put(frame)
|
||
|
||
def _play_frame(stream, exit_event, queue, chunk):
|
||
|
||
while True:
|
||
if exit_event.is_set():
|
||
print(f'[INFO] play frame thread ends')
|
||
break
|
||
frame = queue.get()
|
||
frame = (frame * 32767).astype(np.int16).tobytes()
|
||
stream.write(frame, chunk)
|
||
|
||
class ASR:
|
||
def __init__(self, opt):
|
||
|
||
self.opt = opt
|
||
|
||
self.play = opt.asr_play #false
|
||
|
||
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||
self.fps = opt.fps # 20 ms per frame
|
||
self.sample_rate = 16000
|
||
self.chunk = self.sample_rate // self.fps # 320 samples per chunk (20ms * 16000 / 1000)
|
||
self.mode = 'live' if opt.asr_wav == '' else 'file'
|
||
|
||
if 'esperanto' in self.opt.asr_model:
|
||
self.audio_dim = 44
|
||
elif 'deepspeech' in self.opt.asr_model:
|
||
self.audio_dim = 29
|
||
else:
|
||
self.audio_dim = 32
|
||
|
||
# prepare context cache
|
||
# each segment is (stride_left + ctx + stride_right) * 20ms, latency should be (ctx + stride_right) * 20ms
|
||
self.context_size = opt.m
|
||
self.stride_left_size = opt.l
|
||
self.stride_right_size = opt.r
|
||
self.text = '[START]\n'
|
||
self.terminated = False
|
||
self.frames = []
|
||
self.inwarm = False
|
||
|
||
# pad left frames
|
||
if self.stride_left_size > 0:
|
||
self.frames.extend([np.zeros(self.chunk, dtype=np.float32)] * self.stride_left_size)
|
||
|
||
|
||
self.exit_event = Event()
|
||
#self.audio_instance = pyaudio.PyAudio() #not need
|
||
|
||
# create input stream
|
||
if self.mode == 'file': #live mode
|
||
self.file_stream = self.create_file_stream()
|
||
else:
|
||
self.queue = Queue()
|
||
self.input_stream = BytesIO()
|
||
self.output_queue = Queue()
|
||
# start a background process to read frames
|
||
#self.input_stream = self.audio_instance.open(format=pyaudio.paInt16, channels=1, rate=self.sample_rate, input=True, output=False, frames_per_buffer=self.chunk)
|
||
#self.queue = Queue()
|
||
#self.process_read_frame = Thread(target=_read_frame, args=(self.input_stream, self.exit_event, self.queue, self.chunk))
|
||
|
||
# play out the audio too...?
|
||
if self.play:
|
||
self.output_stream = self.audio_instance.open(format=pyaudio.paInt16, channels=1, rate=self.sample_rate, input=False, output=True, frames_per_buffer=self.chunk)
|
||
self.output_queue = Queue()
|
||
self.process_play_frame = Thread(target=_play_frame, args=(self.output_stream, self.exit_event, self.output_queue, self.chunk))
|
||
|
||
# current location of audio
|
||
self.idx = 0
|
||
|
||
# create wav2vec model
|
||
print(f'[INFO] loading ASR model {self.opt.asr_model}...')
|
||
self.processor = AutoProcessor.from_pretrained(opt.asr_model)
|
||
self.model = AutoModelForCTC.from_pretrained(opt.asr_model).to(self.device)
|
||
|
||
# prepare to save logits
|
||
if self.opt.asr_save_feats:
|
||
self.all_feats = []
|
||
|
||
# the extracted features
|
||
# use a loop queue to efficiently record endless features: [f--t---][-------][-------]
|
||
self.feat_buffer_size = 4
|
||
self.feat_buffer_idx = 0
|
||
self.feat_queue = torch.zeros(self.feat_buffer_size * self.context_size, self.audio_dim, dtype=torch.float32, device=self.device)
|
||
|
||
# TODO: hard coded 16 and 8 window size...
|
||
self.front = self.feat_buffer_size * self.context_size - 8 # fake padding
|
||
self.tail = 8
|
||
# attention window...
|
||
self.att_feats = [torch.zeros(self.audio_dim, 16, dtype=torch.float32, device=self.device)] * 4 # 4 zero padding...
|
||
|
||
# warm up steps needed: mid + right + window_size + attention_size
|
||
self.warm_up_steps = self.context_size + self.stride_right_size + 8 + 2 * 3
|
||
|
||
self.listening = False
|
||
self.playing = False
|
||
|
||
def listen(self):
|
||
# start
|
||
if self.mode == 'live' and not self.listening:
|
||
print(f'[INFO] starting read frame thread...')
|
||
self.process_read_frame.start()
|
||
self.listening = True
|
||
|
||
if self.play and not self.playing:
|
||
print(f'[INFO] starting play frame thread...')
|
||
self.process_play_frame.start()
|
||
self.playing = True
|
||
|
||
def stop(self):
|
||
|
||
self.exit_event.set()
|
||
|
||
if self.play:
|
||
self.output_stream.stop_stream()
|
||
self.output_stream.close()
|
||
if self.playing:
|
||
self.process_play_frame.join()
|
||
self.playing = False
|
||
|
||
if self.mode == 'live':
|
||
#self.input_stream.stop_stream() todo
|
||
self.input_stream.close()
|
||
if self.listening:
|
||
self.process_read_frame.join()
|
||
self.listening = False
|
||
|
||
|
||
def __enter__(self):
|
||
return self
|
||
|
||
def __exit__(self, exc_type, exc_value, traceback):
|
||
|
||
self.stop()
|
||
|
||
if self.mode == 'live':
|
||
# live mode: also print the result text.
|
||
self.text += '\n[END]'
|
||
print(self.text)
|
||
|
||
def get_next_feat(self):
|
||
# return a [1/8, 16] window, for the next input to nerf side.
|
||
|
||
while len(self.att_feats) < 8:
|
||
# [------f+++t-----]
|
||
if self.front < self.tail:
|
||
feat = self.feat_queue[self.front:self.tail]
|
||
# [++t-----------f+]
|
||
else:
|
||
feat = torch.cat([self.feat_queue[self.front:], self.feat_queue[:self.tail]], dim=0)
|
||
|
||
self.front = (self.front + 2) % self.feat_queue.shape[0]
|
||
self.tail = (self.tail + 2) % self.feat_queue.shape[0]
|
||
|
||
# print(self.front, self.tail, feat.shape)
|
||
|
||
self.att_feats.append(feat.permute(1, 0))
|
||
|
||
att_feat = torch.stack(self.att_feats, dim=0) # [8, 44, 16]
|
||
|
||
# discard old
|
||
self.att_feats = self.att_feats[1:]
|
||
|
||
return att_feat
|
||
|
||
def run_step(self):
|
||
|
||
if self.terminated:
|
||
return
|
||
|
||
# get a frame of audio
|
||
frame = self.get_audio_frame()
|
||
|
||
# the last frame
|
||
if frame is None:
|
||
# terminate, but always run the network for the left frames
|
||
self.terminated = True
|
||
else:
|
||
self.frames.append(frame)
|
||
# put to output
|
||
#if self.play:
|
||
self.output_queue.put(frame)
|
||
# context not enough, do not run network.
|
||
if len(self.frames) < self.stride_left_size + self.context_size + self.stride_right_size:
|
||
return
|
||
|
||
inputs = np.concatenate(self.frames) # [N * chunk]
|
||
|
||
# discard the old part to save memory
|
||
if not self.terminated:
|
||
self.frames = self.frames[-(self.stride_left_size + self.stride_right_size):]
|
||
|
||
print(f'[INFO] frame_to_text... ')
|
||
logits, labels, text = self.frame_to_text(inputs)
|
||
feats = logits # better lips-sync than labels
|
||
|
||
# save feats
|
||
if self.opt.asr_save_feats:
|
||
self.all_feats.append(feats)
|
||
|
||
# record the feats efficiently.. (no concat, constant memory)
|
||
start = self.feat_buffer_idx * self.context_size
|
||
end = start + feats.shape[0]
|
||
self.feat_queue[start:end] = feats
|
||
self.feat_buffer_idx = (self.feat_buffer_idx + 1) % self.feat_buffer_size
|
||
|
||
# very naive, just concat the text output.
|
||
if text != '':
|
||
self.text = self.text + ' ' + text
|
||
|
||
# will only run once at ternimation
|
||
if self.terminated:
|
||
self.text += '\n[END]'
|
||
print(self.text)
|
||
if self.opt.asr_save_feats:
|
||
print(f'[INFO] save all feats for training purpose... ')
|
||
feats = torch.cat(self.all_feats, dim=0) # [N, C]
|
||
# print('[INFO] before unfold', feats.shape)
|
||
window_size = 16
|
||
padding = window_size // 2
|
||
feats = feats.view(-1, self.audio_dim).permute(1, 0).contiguous() # [C, M]
|
||
feats = feats.view(1, self.audio_dim, -1, 1) # [1, C, M, 1]
|
||
unfold_feats = F.unfold(feats, kernel_size=(window_size, 1), padding=(padding, 0), stride=(2, 1)) # [1, C * window_size, M / 2 + 1]
|
||
unfold_feats = unfold_feats.view(self.audio_dim, window_size, -1).permute(2, 1, 0).contiguous() # [C, window_size, M / 2 + 1] --> [M / 2 + 1, window_size, C]
|
||
# print('[INFO] after unfold', unfold_feats.shape)
|
||
# save to a npy file
|
||
if 'esperanto' in self.opt.asr_model:
|
||
output_path = self.opt.asr_wav.replace('.wav', '_eo.npy')
|
||
else:
|
||
output_path = self.opt.asr_wav.replace('.wav', '.npy')
|
||
np.save(output_path, unfold_feats.cpu().numpy())
|
||
print(f"[INFO] saved logits to {output_path}")
|
||
|
||
def create_file_stream(self):
|
||
|
||
stream, sample_rate = sf.read(self.opt.asr_wav) # [T*sample_rate,] float64
|
||
stream = stream.astype(np.float32)
|
||
|
||
if stream.ndim > 1:
|
||
print(f'[WARN] audio has {stream.shape[1]} channels, only use the first.')
|
||
stream = stream[:, 0]
|
||
|
||
if sample_rate != self.sample_rate:
|
||
print(f'[WARN] audio sample rate is {sample_rate}, resampling into {self.sample_rate}.')
|
||
stream = resampy.resample(x=stream, sr_orig=sample_rate, sr_new=self.sample_rate)
|
||
|
||
print(f'[INFO] loaded audio stream {self.opt.asr_wav}: {stream.shape}')
|
||
|
||
return stream
|
||
|
||
|
||
def create_pyaudio_stream(self):
|
||
|
||
import pyaudio
|
||
|
||
print(f'[INFO] creating live audio stream ...')
|
||
|
||
audio = pyaudio.PyAudio()
|
||
|
||
# get devices
|
||
info = audio.get_host_api_info_by_index(0)
|
||
n_devices = info.get('deviceCount')
|
||
|
||
for i in range(0, n_devices):
|
||
if (audio.get_device_info_by_host_api_device_index(0, i).get('maxInputChannels')) > 0:
|
||
name = audio.get_device_info_by_host_api_device_index(0, i).get('name')
|
||
print(f'[INFO] choose audio device {name}, id {i}')
|
||
break
|
||
|
||
# get stream
|
||
stream = audio.open(input_device_index=i,
|
||
format=pyaudio.paInt16,
|
||
channels=1,
|
||
rate=self.sample_rate,
|
||
input=True,
|
||
frames_per_buffer=self.chunk)
|
||
|
||
return audio, stream
|
||
|
||
|
||
def get_audio_frame(self):
|
||
|
||
if self.inwarm: # warm up
|
||
return np.zeros(self.chunk, dtype=np.float32)
|
||
|
||
if self.mode == 'file':
|
||
|
||
if self.idx < self.file_stream.shape[0]:
|
||
frame = self.file_stream[self.idx: self.idx + self.chunk]
|
||
self.idx = self.idx + self.chunk
|
||
return frame
|
||
else:
|
||
return None
|
||
|
||
else:
|
||
try:
|
||
frame = self.queue.get(block=False)
|
||
print(f'[INFO] get frame {frame.shape}')
|
||
except queue.Empty:
|
||
frame = np.zeros(self.chunk, dtype=np.float32)
|
||
|
||
self.idx = self.idx + self.chunk
|
||
|
||
return frame
|
||
|
||
|
||
def frame_to_text(self, frame):
|
||
# frame: [N * 320], N = (context_size + 2 * stride_size)
|
||
|
||
inputs = self.processor(frame, sampling_rate=self.sample_rate, return_tensors="pt", padding=True)
|
||
|
||
with torch.no_grad():
|
||
result = self.model(inputs.input_values.to(self.device))
|
||
logits = result.logits # [1, N - 1, 32]
|
||
|
||
# cut off stride
|
||
left = max(0, self.stride_left_size)
|
||
right = min(logits.shape[1], logits.shape[1] - self.stride_right_size + 1) # +1 to make sure output is the same length as input.
|
||
|
||
# do not cut right if terminated.
|
||
if self.terminated:
|
||
right = logits.shape[1]
|
||
|
||
logits = logits[:, left:right]
|
||
|
||
# print(frame.shape, inputs.input_values.shape, logits.shape)
|
||
|
||
predicted_ids = torch.argmax(logits, dim=-1)
|
||
transcription = self.processor.batch_decode(predicted_ids)[0].lower()
|
||
|
||
|
||
# for esperanto
|
||
# labels = np.array(['ŭ', '»', 'c', 'ĵ', 'ñ', '”', '„', '“', 'ǔ', 'o', 'ĝ', 'm', 'k', 'd', 'a', 'ŝ', 'z', 'i', '«', '—', '‘', 'ĥ', 'f', 'y', 'h', 'j', '|', 'r', 'u', 'ĉ', 's', '–', 'fi', 'l', 'p', '’', 'g', 'v', 't', 'b', 'n', 'e', '[UNK]', '[PAD]'])
|
||
|
||
# labels = np.array([' ', ' ', ' ', '-', '|', 'E', 'T', 'A', 'O', 'N', 'I', 'H', 'S', 'R', 'D', 'L', 'U', 'M', 'W', 'C', 'F', 'G', 'Y', 'P', 'B', 'V', 'K', "'", 'X', 'J', 'Q', 'Z'])
|
||
# print(''.join(labels[predicted_ids[0].detach().cpu().long().numpy()]))
|
||
# print(predicted_ids[0])
|
||
# print(transcription)
|
||
|
||
return logits[0], predicted_ids[0], transcription # [N,]
|
||
|
||
def create_bytes_stream(self,byte_stream):
|
||
#byte_stream=BytesIO(buffer)
|
||
stream, sample_rate = sf.read(byte_stream) # [T*sample_rate,] float64
|
||
print(f'[INFO]tts audio stream {sample_rate}: {stream.shape}')
|
||
stream = stream.astype(np.float32)
|
||
|
||
if stream.ndim > 1:
|
||
print(f'[WARN] audio has {stream.shape[1]} channels, only use the first.')
|
||
stream = stream[:, 0]
|
||
|
||
if sample_rate != self.sample_rate:
|
||
print(f'[WARN] audio sample rate is {sample_rate}, resampling into {self.sample_rate}.')
|
||
stream = resampy.resample(x=stream, sr_orig=sample_rate, sr_new=self.sample_rate)
|
||
|
||
return stream
|
||
|
||
def push_audio(self,buffer):
|
||
print(f'[INFO] push_audio {len(buffer)}')
|
||
# if len(buffer)>0:
|
||
# byte_stream=BytesIO(buffer)
|
||
# stream = self.create_bytes_stream(byte_stream)
|
||
# streamlen = stream.shape[0]
|
||
# idx=0
|
||
# while streamlen >= self.chunk:
|
||
# self.queue.put(stream[idx:idx+self.chunk])
|
||
# streamlen -= self.chunk
|
||
# idx += self.chunk
|
||
# if streamlen>0:
|
||
# self.queue.put(stream[idx:])
|
||
self.input_stream.write(buffer)
|
||
if len(buffer)<=0:
|
||
self.input_stream.seek(0)
|
||
stream = self.create_bytes_stream(self.input_stream)
|
||
streamlen = stream.shape[0]
|
||
idx=0
|
||
while streamlen >= self.chunk:
|
||
self.queue.put(stream[idx:idx+self.chunk])
|
||
streamlen -= self.chunk
|
||
idx += self.chunk
|
||
if streamlen>0:
|
||
self.queue.put(stream[idx:])
|
||
self.input_stream.seek(0)
|
||
self.input_stream.truncate()
|
||
|
||
def get_audio_out(self):
|
||
return self.output_queue.get()
|
||
|
||
def run(self):
|
||
|
||
self.listen()
|
||
|
||
while not self.terminated:
|
||
self.run_step()
|
||
|
||
def clear_queue(self):
|
||
# clear the queue, to reduce potential latency...
|
||
print(f'[INFO] clear queue')
|
||
if self.mode == 'live':
|
||
self.queue.queue.clear()
|
||
if self.play:
|
||
self.output_queue.queue.clear()
|
||
|
||
def warm_up(self):
|
||
|
||
#self.listen()
|
||
|
||
self.inwarm = True
|
||
print(f'[INFO] warm up ASR live model, expected latency = {self.warm_up_steps / self.fps:.6f}s')
|
||
t = time.time()
|
||
for _ in range(self.warm_up_steps):
|
||
self.run_step()
|
||
if torch.cuda.is_available():
|
||
torch.cuda.synchronize()
|
||
t = time.time() - t
|
||
print(f'[INFO] warm-up done, actual latency = {t:.6f}s')
|
||
self.inwarm = False
|
||
|
||
#self.clear_queue()
|
||
|
||
|
||
|
||
|
||
if __name__ == '__main__':
|
||
import argparse
|
||
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument('--wav', type=str, default='')
|
||
parser.add_argument('--play', action='store_true', help="play out the audio")
|
||
|
||
parser.add_argument('--model', type=str, default='cpierse/wav2vec2-large-xlsr-53-esperanto')
|
||
# parser.add_argument('--model', type=str, default='facebook/wav2vec2-large-960h-lv60-self')
|
||
|
||
parser.add_argument('--save_feats', action='store_true')
|
||
# audio FPS
|
||
parser.add_argument('--fps', type=int, default=50)
|
||
# sliding window left-middle-right length.
|
||
parser.add_argument('-l', type=int, default=10)
|
||
parser.add_argument('-m', type=int, default=50)
|
||
parser.add_argument('-r', type=int, default=10)
|
||
|
||
opt = parser.parse_args()
|
||
|
||
# fix
|
||
opt.asr_wav = opt.wav
|
||
opt.asr_play = opt.play
|
||
opt.asr_model = opt.model
|
||
opt.asr_save_feats = opt.save_feats
|
||
|
||
if 'deepspeech' in opt.asr_model:
|
||
raise ValueError("DeepSpeech features should not use this code to extract...")
|
||
|
||
with ASR(opt) as asr:
|
||
asr.run() |