39 lines
1.4 KiB
Python
39 lines
1.4 KiB
Python
import os
|
|
import torch
|
|
import requests
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
|
|
|
|
class Qwen:
|
|
def __init__(self, model_path="Qwen/Qwen-1_8B-Chat") -> None:
|
|
'''暂时不写api版本,与Linly-api相类似,感兴趣可以实现一下'''
|
|
self.model, self.tokenizer = self.init_model(model_path)
|
|
self.data = {}
|
|
|
|
def init_model(self, path="Qwen/Qwen-1_8B-Chat"):
|
|
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-1_8B-Chat",
|
|
device_map="auto",
|
|
trust_remote_code=True).eval()
|
|
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
|
|
|
|
return model, tokenizer
|
|
|
|
def chat(self, question):
|
|
|
|
self.data["question"] = f"{question} ### Instruction:{question} ### Response:"
|
|
try:
|
|
response, history = self.model.chat(self.tokenizer, self.data["question"], history=None)
|
|
print(history)
|
|
return response
|
|
except:
|
|
return "对不起,你的请求出错了,请再次尝试。\nSorry, your request has encountered an error. Please try again.\n"
|
|
|
|
|
|
def test():
|
|
llm = Qwen(model_path="Qwen/Qwen-1_8B-Chat")
|
|
answer = llm.chat(question="如何应对压力?")
|
|
print(answer)
|
|
|
|
if __name__ == '__main__':
|
|
test()
|