livetalking/musereal.py

194 lines
7.9 KiB
Python

import math
import torch
import numpy as np
#from .utils import *
import subprocess
import os
import time
import torch.nn.functional as F
import cv2
import glob
import pickle
import copy
import queue
from queue import Queue
from threading import Thread, Event
from io import BytesIO
from musetalk.utils.utils import get_file_type,get_video_fps,datagen
from musetalk.utils.preprocessing import get_landmark_and_bbox,read_imgs,coord_placeholder
from musetalk.utils.blending import get_image,get_image_prepare_material,get_image_blending
from musetalk.utils.utils import load_all_model
from museasr import MuseASR
import asyncio
from av import AudioFrame, VideoFrame
class MuseReal:
def __init__(self, opt):
self.opt = opt # shared with the trainer's opt to support in-place modification of rendering parameters.
self.W = opt.W
self.H = opt.H
self.fps = opt.fps # 20 ms per frame
#### musetalk
self.avatar_id = opt.avatar_id
self.video_path = '' #video_path
self.bbox_shift = opt.bbox_shift
self.avatar_path = f"./data/avatars/{self.avatar_id}"
self.full_imgs_path = f"{self.avatar_path}/full_imgs"
self.coords_path = f"{self.avatar_path}/coords.pkl"
self.latents_out_path= f"{self.avatar_path}/latents.pt"
self.video_out_path = f"{self.avatar_path}/vid_output/"
self.mask_out_path =f"{self.avatar_path}/mask"
self.mask_coords_path =f"{self.avatar_path}/mask_coords.pkl"
self.avatar_info_path = f"{self.avatar_path}/avator_info.json"
self.avatar_info = {
"avatar_id":self.avatar_id,
"video_path":self.video_path,
"bbox_shift":self.bbox_shift
}
self.batch_size = opt.batch_size
self.idx = 0
self.res_frame_queue = Queue()
self.__loadmodels()
self.__loadavatar()
self.asr = MuseASR(opt,self.audio_processor)
def __loadmodels(self):
# load model weights
self.audio_processor, self.vae, self.unet, self.pe = load_all_model()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.timesteps = torch.tensor([0], device=device)
self.pe = self.pe.half()
self.vae.vae = self.vae.vae.half()
self.unet.model = self.unet.model.half()
def __loadavatar(self):
self.input_latent_list_cycle = torch.load(self.latents_out_path)
with open(self.coords_path, 'rb') as f:
self.coord_list_cycle = pickle.load(f)
input_img_list = glob.glob(os.path.join(self.full_imgs_path, '*.[jpJP][pnPN]*[gG]'))
input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
self.frame_list_cycle = read_imgs(input_img_list)
with open(self.mask_coords_path, 'rb') as f:
self.mask_coords_list_cycle = pickle.load(f)
input_mask_list = glob.glob(os.path.join(self.mask_out_path, '*.[jpJP][pnPN]*[gG]'))
input_mask_list = sorted(input_mask_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
self.mask_list_cycle = read_imgs(input_mask_list)
def push_audio(self,buffer):
self.asr.push_audio(buffer)
def __mirror_index(self, index):
size = len(self.coord_list_cycle)
turn = index // size
res = index % size
if turn % 2 == 0:
return res
else:
return size - res - 1
def test_step(self,loop=None,audio_track=None,video_track=None):
# gen = datagen(whisper_chunks,
# self.input_latent_list_cycle,
# self.batch_size)
self.asr.run_step()
whisper_chunks = self.asr.get_next_feat()
whisper_batch = np.stack(whisper_chunks)
latent_batch = []
for i in range(self.batch_size):
idx = self.__mirror_index(self.idx+i)
latent = self.input_latent_list_cycle[idx]
latent_batch.append(latent)
latent_batch = torch.cat(latent_batch, dim=0)
# for i, (whisper_batch,latent_batch) in enumerate(gen):
audio_feature_batch = torch.from_numpy(whisper_batch)
audio_feature_batch = audio_feature_batch.to(device=self.unet.device,
dtype=self.unet.model.dtype)
audio_feature_batch = self.pe(audio_feature_batch)
latent_batch = latent_batch.to(dtype=self.unet.model.dtype)
pred_latents = self.unet.model(latent_batch,
self.timesteps,
encoder_hidden_states=audio_feature_batch).sample
recon = self.vae.decode_latents(pred_latents)
#print('diffusion len=',len(recon))
for res_frame in recon:
#self.__pushmedia(res_frame,loop,audio_track,video_track)
self.res_frame_queue.put((res_frame,self.__mirror_index(self.idx)))
self.idx = self.idx + 1
def process_frames(self,quit_event,loop=None,audio_track=None,video_track=None):
while not quit_event.is_set():
try:
res_frame,idx = self.res_frame_queue.get(block=True, timeout=1)
except queue.Empty:
continue
bbox = self.coord_list_cycle[idx]
ori_frame = copy.deepcopy(self.frame_list_cycle[idx])
x1, y1, x2, y2 = bbox
try:
res_frame = cv2.resize(res_frame.astype(np.uint8),(x2-x1,y2-y1))
except:
continue
mask = self.mask_list_cycle[idx]
mask_crop_box = self.mask_coords_list_cycle[idx]
#combine_frame = get_image(ori_frame,res_frame,bbox)
combine_frame = get_image_blending(ori_frame,res_frame,bbox,mask,mask_crop_box)
image = combine_frame #(outputs['image'] * 255).astype(np.uint8)
new_frame = VideoFrame.from_ndarray(image, format="bgr24")
asyncio.run_coroutine_threadsafe(video_track._queue.put(new_frame), loop)
audiotype = 0
for _ in range(2):
frame,type = self.asr.get_audio_out()
audiotype += type
frame = (frame * 32767).astype(np.int16)
new_frame = AudioFrame(format='s16', layout='mono', samples=frame.shape[0])
new_frame.planes[0].update(frame.tobytes())
new_frame.sample_rate=16000
# if audio_track._queue.qsize()>10:
# time.sleep(0.1)
asyncio.run_coroutine_threadsafe(audio_track._queue.put(new_frame), loop)
def render(self,quit_event,loop=None,audio_track=None,video_track=None):
#if self.opt.asr:
# self.asr.warm_up()
process_thread = Thread(target=self.process_frames, args=(quit_event,loop,audio_track,video_track))
process_thread.start()
count=0
totaltime=0
_starttime=time.perf_counter()
#_totalframe=0
while not quit_event.is_set(): #todo
# update texture every frame
# audio stream thread...
t = time.perf_counter()
self.test_step(loop,audio_track,video_track)
totaltime += (time.perf_counter() - t)
count += self.opt.batch_size
#_totalframe += 1
if count>=100:
print(f"------actual avg infer fps:{count/totaltime:.4f}")
count=0
totaltime=0
if self.res_frame_queue.qsize()>2*self.opt.batch_size:
time.sleep(0.1)
#print('sleep')
# delay = _starttime+_totalframe*0.04-time.perf_counter() #40ms
# if delay > 0:
# time.sleep(delay)