283 lines
10 KiB
Markdown
283 lines
10 KiB
Markdown
Real time interactive streaming digital human, realize audio video synchronous dialogue. It can basically achieve commercial effects.
|
||
实时交互流式数字人,实现音视频同步对话。基本可以达到商用效果
|
||
|
||
[ernerf效果](https://www.bilibili.com/video/BV1PM4m1y7Q2/) [musetalk效果](https://www.bilibili.com/video/BV1gm421N7vQ/) [wav2lip效果](https://www.bilibili.com/video/BV1Bw4m1e74P/)
|
||
|
||
## Features
|
||
1. 支持多种数字人模型: ernerf、musetalk、wav2lip
|
||
2. 支持声音克隆
|
||
3. 支持数字人说话被打断
|
||
4. 支持全身视频拼接
|
||
5. 支持rtmp和webrtc
|
||
6. 支持视频编排:不说话时播放自定义视频
|
||
|
||
## 1. Installation
|
||
|
||
Tested on Ubuntu 20.04, Python3.10, Pytorch 1.12 and CUDA 11.3
|
||
|
||
### 1.1 Install dependency
|
||
|
||
```bash
|
||
conda create -n nerfstream python=3.10
|
||
conda activate nerfstream
|
||
conda install pytorch==1.12.1 torchvision==0.13.1 cudatoolkit=11.3 -c pytorch
|
||
pip install -r requirements.txt
|
||
#如果只用musetalk或者wav2lip模型,不需要安装下面的库
|
||
pip install "git+https://github.com/facebookresearch/pytorch3d.git"
|
||
pip install tensorflow-gpu==2.8.0
|
||
pip install --upgrade "protobuf<=3.20.1"
|
||
```
|
||
安装常见问题[FAQ](/assets/faq.md)
|
||
linux cuda环境搭建可以参考这篇文章 https://zhuanlan.zhihu.com/p/674972886
|
||
|
||
|
||
## 2. Quick Start
|
||
默认采用ernerf模型,webrtc推流到srs
|
||
### 2.1 运行srs
|
||
```
|
||
export CANDIDATE='<服务器外网ip>'
|
||
docker run --rm --env CANDIDATE=$CANDIDATE \
|
||
-p 1935:1935 -p 8080:8080 -p 1985:1985 -p 8000:8000/udp \
|
||
registry.cn-hangzhou.aliyuncs.com/ossrs/srs:5 \
|
||
objs/srs -c conf/rtc.conf
|
||
```
|
||
|
||
### 2.2 启动数字人:
|
||
|
||
```python
|
||
python app.py
|
||
```
|
||
|
||
如果访问不了huggingface,在运行前
|
||
```
|
||
export HF_ENDPOINT=https://hf-mirror.com
|
||
```
|
||
|
||
用浏览器打开http://serverip:8010/rtcpushapi.html, 在文本框输入任意文字,提交。数字人播报该段文字
|
||
备注:服务端需要开放端口 tcp:8000,8010,1985; udp:8000
|
||
|
||
## 3. More Usage
|
||
分别选择数字人模型、传输方式、tts模型
|
||
|
||
### 3.1 数字人模型
|
||
支持3种模型:ernerf、musetalk、wav2lip,默认用ernerf
|
||
#### 3.1.1 ER-Nerf
|
||
```
|
||
python app.py --model ernerf
|
||
```
|
||
支持如下参数配置
|
||
##### 3.1.1.1 音频特征用hubert
|
||
默认用的wav2vec,如果训练模型时用的hubert提取音频特征,用如下命令启动数字人
|
||
```
|
||
python app.py --asr_model facebook/hubert-large-ls960-ft
|
||
```
|
||
|
||
##### 3.1.1.2 设置头部背景图片
|
||
```
|
||
python app.py --bg_img bc.jpg
|
||
```
|
||
|
||
##### 3.1.1.3 全身视频贴回
|
||
- 1.切割训练用的视频
|
||
```
|
||
ffmpeg -i fullbody.mp4 -vf crop="400:400:100:5" train.mp4
|
||
```
|
||
用train.mp4训练模型
|
||
- 2.提取全身图片
|
||
```
|
||
ffmpeg -i fullbody.mp4 -vf fps=25 -qmin 1 -q:v 1 -start_number 0 data/fullbody/img/%d.jpg
|
||
```
|
||
- 3.启动数字人
|
||
```
|
||
python app.py --fullbody --fullbody_img data/fullbody/img --fullbody_offset_x 100 --fullbody_offset_y 5 --fullbody_width 580 --fullbody_height 1080 --W 400 --H 400
|
||
```
|
||
- --fullbody_width、--fullbody_height 全身视频的宽、高
|
||
- --W、--H 训练视频的宽、高
|
||
- ernerf训练第三步torso如果训练的不好,在拼接处会有接缝。可以在上面的命令加上--torso_imgs data/xxx/torso_imgs,torso不用模型推理,直接用训练数据集里的torso图片。这种方式可能头颈处会有些人工痕迹。
|
||
|
||
#### 3.1.2 模型用musetalk
|
||
暂不支持rtmp推送
|
||
- 安装依赖库
|
||
```bash
|
||
conda install ffmpeg
|
||
pip install --no-cache-dir -U openmim
|
||
mim install mmengine
|
||
mim install "mmcv>=2.0.1"
|
||
mim install "mmdet>=3.1.0"
|
||
mim install "mmpose>=1.1.0"
|
||
```
|
||
- 下载模型
|
||
下载MuseTalk运行需要的模型,提供一个下载地址 https://caiyun.139.com/m/i?2eAjs2nXXnRgr 提取码:qdg2
|
||
解压后,将models下文件拷到本项目的models下
|
||
下载数字人模型,链接: https://caiyun.139.com/m/i?2eAjs8optksop 提取码:3mkt, 解压后将整个文件夹拷到本项目的data/avatars下
|
||
- 运行
|
||
python app.py --model musetalk --transport webrtc
|
||
用浏览器打开http://serverip:8010/webrtcapi.html
|
||
可以设置--batch_size 提高显卡利用率,设置--avatar_id 运行不同的数字人
|
||
##### 替换成自己的数字人
|
||
```bash
|
||
git clone https://github.com/TMElyralab/MuseTalk.git
|
||
cd MuseTalk
|
||
修改configs/inference/realtime.yaml,将preparation改为True
|
||
python -m scripts.realtime_inference --inference_config configs/inference/realtime.yaml
|
||
运行后将results/avatars下文件拷到本项目的data/avatars下
|
||
方法二
|
||
执行
|
||
cd musetalk
|
||
python simple_musetalk.py --avatar_id 4 --file D:\\ok\\test.mp4
|
||
支持视频和图片生成 会自动生成到data的avatars目录下
|
||
```
|
||
|
||
#### 3.1.3 模型用wav2lip
|
||
暂不支持rtmp推送
|
||
- 下载模型
|
||
下载wav2lip运行需要的模型,链接: https://pan.baidu.com/s/1yOsQ06-RIDTJd3HFCw4wtA 密码: ltua
|
||
将s3fd.pth拷到本项目wav2lip/face_detection/detection/sfd/s3fd.pth, 将wav2lip.pth拷到本项目的models下
|
||
数字人模型文件 wav2lip_avatar1.tar.gz, 解压后将整个文件夹拷到本项目的data/avatars下
|
||
- 运行
|
||
python app.py --transport webrtc --model wav2lip --avatar_id wav2lip_avatar1
|
||
用浏览器打开http://serverip:8010/webrtcapi.html
|
||
可以设置--batch_size 提高显卡利用率,设置--avatar_id 运行不同的数字人
|
||
##### 替换成自己的数字人
|
||
```bash
|
||
cd wav2lip
|
||
python genavatar.py --video_path xxx.mp4
|
||
运行后将results/avatars下文件拷到本项目的data/avatars下
|
||
```
|
||
|
||
### 3.2 传输模式
|
||
支持webrtc、rtcpush、rtmp,默认用rtcpush
|
||
#### 3.2.1 webrtc p2p
|
||
此种模式不需要srs
|
||
```
|
||
python app.py --transport webrtc
|
||
```
|
||
服务端需要开放端口 tcp:8010; udp:50000~60000
|
||
用浏览器打开http://serverip:8010/webrtcapi.html
|
||
|
||
#### 3.2.2 webrtc推送到srs
|
||
- 启动srs
|
||
```
|
||
export CANDIDATE='<服务器外网ip>'
|
||
docker run --rm --env CANDIDATE=$CANDIDATE \
|
||
-p 1935:1935 -p 8080:8080 -p 1985:1985 -p 8000:8000/udp \
|
||
registry.cn-hangzhou.aliyuncs.com/ossrs/srs:5 \
|
||
objs/srs -c conf/rtc.conf
|
||
```
|
||
- 运行数字人
|
||
```python
|
||
python app.py --transport rtcpush --push_url 'http://localhost:1985/rtc/v1/whip/?app=live&stream=livestream'
|
||
```
|
||
用浏览器打开http://serverip:8010/rtcpushapi.html
|
||
|
||
#### 3.2.3 rtmp推送到srs
|
||
- 安装rtmpstream库
|
||
参照 https://github.com/lipku/python_rtmpstream
|
||
|
||
- 启动srs
|
||
```
|
||
docker run --rm -it -p 1935:1935 -p 1985:1985 -p 8080:8080 registry.cn-hangzhou.aliyuncs.com/ossrs/srs:5
|
||
```
|
||
- 运行数字人
|
||
```python
|
||
python app.py --transport rtmp --push_url 'rtmp://localhost/live/livestream'
|
||
```
|
||
用浏览器打开http://serverip:8010/echoapi.html
|
||
|
||
### 3.3 TTS模型
|
||
支持edgetts、gpt-sovits、xtts,默认用edgetts
|
||
#### 3.3.1 gpt-sovits
|
||
服务部署参照[gpt-sovits](/tts/README.md)
|
||
运行
|
||
```
|
||
python app.py --tts gpt-sovits --TTS_SERVER http://127.0.0.1:9880 --REF_FILE data/ref.wav --REF_TEXT xxx
|
||
```
|
||
REF_TEXT为REF_FILE中语音内容,时长不宜过长
|
||
|
||
#### 3.3.2 xtts
|
||
运行xtts服务,参照 https://github.com/coqui-ai/xtts-streaming-server
|
||
```
|
||
docker run --gpus=all -e COQUI_TOS_AGREED=1 --rm -p 9000:80 ghcr.io/coqui-ai/xtts-streaming-server:latest
|
||
```
|
||
然后运行,其中ref.wav为需要克隆的声音文件
|
||
```
|
||
python app.py --tts xtts --REF_FILE data/ref.wav --TTS_SERVER http://localhost:9000
|
||
```
|
||
|
||
### 3.4 视频编排
|
||
- 1,生成素材
|
||
```
|
||
ffmpeg -i xxx.mp4 -s 576x768 -vf fps=25 -qmin 1 -q:v 1 -start_number 0 data/customvideo/image/%08d.png
|
||
ffmpeg -i xxx.mp4 -vn -acodec pcm_s16le -ac 1 -ar 16000 data/customvideo/audio.wav
|
||
```
|
||
其中-s与输出视频大小一致
|
||
- 2,编辑data/custom_config.json
|
||
指定imgpath和audiopath。
|
||
设置audiotype,说明:0表示推理视频,不用设置;1表示静音视频,如果不设置默认用推理视频代替; 2以上自定义配置
|
||
- 3,运行
|
||
```
|
||
python app.py --transport webrtc --customvideo_config data/custom_config.json
|
||
```
|
||
- 4,打开http://<serverip>:8010/webrtcapi-custom.html
|
||
填写custom_config.json中配置的audiotype,点击切换视频
|
||
|
||
### 3.5 使用LLM模型进行数字人对话
|
||
|
||
目前借鉴数字人对话系统[LinlyTalker](https://github.com/Kedreamix/Linly-Talker)的方式,LLM模型支持Chatgpt,Qwen和GeminiPro。需要在app.py中填入自己的api_key。
|
||
|
||
用浏览器打开http://serverip:8010/rtcpushchat.html
|
||
|
||
|
||
### 3.6 更多功能集成
|
||
- 语音输入、知识库问答 [Fay](https://github.com/xszyou/Fay)
|
||
- 虚拟主播,字幕抓取 [Luna](https://github.com/Ikaros-521/AI-Vtuber)
|
||
|
||
## 4. Docker Run
|
||
不需要前面的安装,直接运行。
|
||
```
|
||
docker run --gpus all -it --network=host --rm registry.cn-beijing.aliyuncs.com/codewithgpu2/lipku-metahuman-stream:vjo1Y6NJ3N
|
||
```
|
||
代码在/root/metahuman-stream,先git pull拉一下最新代码,然后执行命令同第2、3步
|
||
|
||
另外提供autodl镜像:
|
||
https://www.codewithgpu.com/i/lipku/metahuman-stream/base
|
||
[autodl教程](autodl/README.md)
|
||
|
||
|
||
## 5. ernerf数字人模型文件
|
||
可以替换成自己训练的模型(https://github.com/Fictionarry/ER-NeRF)
|
||
```python
|
||
.
|
||
├── data
|
||
│ ├── data_kf.json
|
||
│ ├── au.csv
|
||
│ ├── pretrained
|
||
│ └── └── ngp_kf.pth
|
||
|
||
```
|
||
|
||
## 6. 性能分析
|
||
1. 帧率
|
||
在Tesla T4显卡上测试整体fps为18左右,如果去掉音视频编码推流,帧率在20左右。用4090显卡可以达到40多帧/秒。
|
||
优化:新开一个线程运行音视频编码推流
|
||
2. 延时
|
||
整体延时3s左右
|
||
(1)tts延时1.7s左右,目前用的edgetts,需要将每句话转完后一次性输入,可以优化tts改成流式输入
|
||
(2)wav2vec延时0.4s,需要缓存18帧音频做计算
|
||
(3)srs转发延时,设置srs服务器减少缓冲延时。具体配置可看 https://ossrs.net/lts/zh-cn/docs/v5/doc/low-latency
|
||
|
||
|
||
## 7. TODO
|
||
- [x] 添加chatgpt实现数字人对话
|
||
- [x] 声音克隆
|
||
- [x] 数字人静音时用一段视频代替
|
||
- [x] MuseTalk
|
||
- [x] Wav2Lip
|
||
- [ ] TalkingGaussian
|
||
|
||
如果本项目对你有帮助,帮忙点个star。也欢迎感兴趣的朋友一起来完善该项目。
|
||
知识星球: https://t.zsxq.com/7NMyO 沉淀高质量常见问题、最佳实践经验、问题解答
|
||
微信公众号:数字人技术
|
||
![](https://mmbiz.qpic.cn/sz_mmbiz_jpg/l3ZibgueFiaeyfaiaLZGuMGQXnhLWxibpJUS2gfs8Dje6JuMY8zu2tVyU9n8Zx1yaNncvKHBMibX0ocehoITy5qQEZg/640?wxfrom=12&tp=wxpic&usePicPrefetch=1&wx_fmt=jpeg&from=appmsg)
|
||
|